
FOUNDATIONTM Fieldbus
NI-FBUS Hardware and Software User Manual

NI-FBUS Hardware and Software User Manual

August 2011
371994G-01

Support

Worldwide Technical Support and Product Information

ni.com

Worldwide Offices

Visit ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information,
support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter
the Info Code feedback.

© 2006–2011 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The NI-FBUS hardware is warranted against defects in materials and workmanship for a period of one year from the date of shipment, as
evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective
during the warranty period. This warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in
materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National Instruments
will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects
during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In
the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document
without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING
FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of
the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the
product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

Trademarks
LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National
Instruments Corporation. Refer to the Trademark Information at ni.com/trademarks for other National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software,
the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global trade compliance
policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE
COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR
ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF
HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY
UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH,
THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES,
INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS
CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION
DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY
RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER
NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT
LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

 Compliance

Electromagnetic Compatibility Information
This hardware has been tested and found to comply with the applicable regulatory requirements and limits for electromagnetic
compatibility (EMC) as indicated in the hardware’s Declaration of Conformity (DoC)1. These requirements and limits are
designed to provide reasonable protection against harmful interference when the hardware is operated in the intended
electromagnetic environment. In special cases, for example when either highly sensitive or noisy hardware is being used in close
proximity, additional mitigation measures may have to be employed to minimize the potential for electromagnetic interference.

While this hardware is compliant with the applicable regulatory EMC requirements, there is no guarantee that interference will
not occur in a particular installation. To minimize the potential for the hardware to cause interference to radio and television
reception or to experience unacceptable performance degradation, install and use this hardware in strict accordance with the
instructions in the hardware documentation and the DoC1.

If this hardware does cause interference with licensed radio communications services or other nearby electronics, which can be
determined by turning the hardware off and on, you are encouraged to try to correct the interference by one or more of the
following measures:
• Reorient the antenna of the receiver (the device suffering interference).
• Relocate the transmitter (the device generating interference) with respect to the receiver.
• Plug the transmitter into a different outlet so that the transmitter and the receiver are on different branch circuits.

Some hardware may require the use of a metal, shielded enclosure (windowless version) to meet the EMC requirements for
special EMC environments such as, for marine use or in heavy industrial areas. Refer to the hardware’s user documentation and
the DoC1 for product installation requirements.

When the hardware is connected to a test object or to test leads, the system may become more sensitive to disturbances or may
cause interference in the local electromagnetic environment.

Operation of this hardware in a residential area is likely to cause harmful interference. Users are required to correct the
interference at their own expense or cease operation of the hardware.

Changes or modifications not expressly approved by National Instruments could void the user’s right to operate the hardware
under the local regulatory rules.

1 The Declaration of Conformity (DoC) contains important EMC compliance information and instructions for the user or
installer. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line,
and click the appropriate link in the Certification column.

© National Instruments Corporation vii NI-FBUS Hardware and Software User Manual

Contents

About This Manual
Conventions ...xi
Related Documentation..xii

Chapter 1
Introduction

FF Overview ..1-1
NI-FBUS Hardware Products ..1-1

PCI, PCMCIA, and USB...1-1
HSE..1-2

NI-FBUS Software Products ...1-2
Communications Manager...1-2
Configurator ..1-2
Monitor ..1-3

Chapter 2
Installation and Configuration

Installing the Software ...2-1
Installing the Hardware..2-2

Install Your PCI-FBUS Card...2-2
Install Your PCMCIA-FBUS Card ...2-3
Install Your USB-8486..2-5

Mount and Connect Your USB-8486..2-7
Install Your FBUS-HSE/H1 LD..2-12

Setting the Communication Parameters and Interface Name ..2-15
Testing the Installation...2-17

Changing or Deleting Existing Interface Information.....................................2-17
Importing Device Descriptions ..2-18

Chapter 3
Connector and Cabling

PCI-FBUS/2...3-1
Fieldbus Cable Connector Pinout..3-1

PCMCIA-FBUS...3-2
Pinout Information...3-2

USB-8486 ..3-4
9-Pin D-SUB (DB-9) Cable Information ..3-4

Contents

NI-FBUS Hardware and Software User Manual viii ni.com

FBUS-HSE/H1 Linking Device .. 3-5
Ethernet Cable Pinouts.. 3-6
Fieldbus H1 Pinout Information ... 3-7

Chapter 4
NI-FBUS CM Software

NI-FBUS Communications Manager Overview ... 4-1
Installing the OPC NI-FBUS Server ... 4-2
NI-FBUS Functions Overview.. 4-2

Administrative Functions .. 4-2
Example: Using Administrative Functions....................................... 4-3

Core Functions .. 4-3
Example: Using Core Functions... 4-4

Alert and Trend Functions .. 4-4
Device Description Functions... 4-5
Using the NI-FBUS Communications Manager Process 4-6

Developing Your NI-FBUS Communications Manager Application 4-7
Choose Your Level of Communication .. 4-7
Choose to Access by Name or Index .. 4-7
Choose to Write Single-Thread or Multi-Thread Applications 4-8

Single-Thread Applications .. 4-8
Multi-Thread Applications ... 4-8

Access Object Dictionary Entries ... 4-9
Access Management Information Base (MIB) Parameters............................. 4-9

H1 Device MIB List Parameters .. 4-10
H1 Device MIB Parameters.. 4-10
HSE Device MIB List Parameters.. 4-11
HSE Device MIB Parameters ... 4-11

Use the NI-FBUS Dialog Utility to Communicate with Devices 4-11
Write Your Application .. 4-12
Compile, Link, and Run Your Application... 4-13

Sample Programs... 4-13
NI-FBUS Dialog Utility .. 4-14
NI-FBUS Dialog Examples... 4-14

Example 1. Get a Device List ... 4-14
Example 2. Download a Schedule to an Interface .. 4-15
Example 3. Read a Parameter Using TAG.PARAM Access............................ 4-16
Example 4. Wait for a Trend... 4-16

Configuring the Link Active Schedule File... 4-17
Introduction to the Link Active Schedule File.. 4-17

Format of the Link Active Schedule File ... 4-18

Contents

© National Instruments Corporation ix NI-FBUS Hardware and Software User Manual

Chapter 5
Developing The Application

LabVIEW...5-1
Visual C++...5-1
Visual Basic ...5-2
.NET Class Libraries..5-2
OPC Server ..5-3

OPC Data Type Mapping Rule..5-3

Chapter 6
NI-FBUS Function Reference

Administrative Functions...6-1
List of Administrative Functions...6-1

Core Fieldbus Functions ..6-26
List of Core Functions ...6-26

Using Interface Macros..6-55
Alert and Trend Functions ...6-56

Appendix A
Specifications

PCI-FBUS/2...A-1
PCMCIA-FBUS...A-4
USB-8486 ..A-7
FBUS-HSE/H1 Linking Device...A-10

Appendix B
Troubleshooting and Common Questions

Interface Board—USB, PCI, and PCMCIA ..B-1
HSE Linking Device ..B-8
NI-FBUS Software ..B-13

Appendix C
Technical Support and Professional Services

Glossary

Index

© National Instruments Corporation xi NI-FBUS Hardware and Software User Manual

About This Manual

This manual contains information on the installation, configuration, and
use of National Instruments Fieldbus hardware and software.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence Options»Settings»General directs you to
pull down the Options menu, select the Settings item, and select General
from the last dialog box.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

About This Manual

NI-FBUS Hardware and Software User Manual xii ni.com

Related Documentation
The following documents contain information that you may find helpful as
you read this manual:

• Fieldbus Standard for Use in Industrial Control Systems, Part 2,
ISA-S50.02.1992

• Wiring and Installation 31.25 kbit/s, Voltage Mode, Wire Medium
Application Guide, Fieldbus Foundation

© National Instruments Corporation 1-1 NI-FBUS Hardware and Software User Manual

1
Introduction

This chapter provides an introduction to the FOUNDATION™ Fieldbus (FF)
and the National Instruments hardware and software products for FF.

FF Overview
FOUNDATION™ Fieldbus is an all-digital, two-way, multi-drop
communication system that brings the control algorithms into
instrumentation. FOUNDATION™ Fieldbus is a Local Area Network (LAN)
for FOUNDATION™ Fieldbus devices including process control sensors,
actuators, and control devices. FOUNDATION™ Fieldbus supports digital
encoding of data and many types of messages. Unlike many traditional
system which requires a set of wires for each device, multiple FOUNDATION™
Fieldbus devices can be connected to the same set of wires.

FOUNDATION™ Fieldbus has two communication protocols: H1 and HSE.
The first, H1, transmits at 31.25 Kb/s and is used to connect the field
devices. The second protocol, High Speed Ethernet (HSE), uses 10 or
100 Mbps Ethernet as the physical later and provides a high-speed
backbone for the network.

Please refer to FOUNDATIONTM Fieldbus Overview document for more
information about FOUNDATION™ Fieldbus technology.

NI-FBUS Hardware Products

PCI, PCMCIA, and USB
National Instruments provides interface devices for the PCI bus
(PCI-FBUS), PCMCIA (PCMCIA-FBUS), and USB (USB-8486). Each
National Instruments device connects FOUNDATION™ Fieldbus devices
to standard desktop, industrial, and notebook personal computers.
PCMCIA-FBUS is available in 1- and 2-port configurations. PCI-FBUS
is available in a 2-port configuration. USB-8486 is available in a 1-port
configuration.

Chapter 1 Introduction

NI-FBUS Hardware and Software User Manual 1-2 ni.com

The PCI-FBUS/USB-8486 uses a standard DB-9 male D-SUB connector to
attach to the Fieldbus network. The PCMCIA-FBUS connects to the
fieldbus by using a cable that provides two connectors to attach to the
fieldbus network DB-9 male D-SUB connector and Combicon-style
pluggable screw terminals.

HSE
The National Instruments FBUS-HSE/H1 is a high-speed Ethernet (HSE)
linking device that couples a 10/100 Mb/s Ethernet network to two H1
FOUNDATION™ Fieldbus segments. The linking device complies with
Class 42a-2 of the HSE profile and acts as the link-active scheduler (LAS)
for the H1 segments, as well as managing all fieldbus communications. It
provides connectivity to H1 devices through HSE networks and supports
function block configurations and scheduling on H1 segments. The
FBUS-HSE/H1 linking device, serving as link masters for 31.25-kbps
H1 segments connected to the HSE network running at 10 Mbps or higher,
is a crucial component in FOUNDATION™ Fieldbus technology.

The combined H1/HSE solution allows for full integration of sensor,
process/discrete control, and hybrid/batch control subsystems with higher
level, supervisory applications. The HSE linking device is the key to
integrate H1 and HSE technology.

NI-FBUS Software Products

Communications Manager
The NI-FBUS Communications Manager implements a high-level
Application Program Interface (API) that lets you communicate with the
National Instruments FOUNDATION™ Fieldbus communication stack and
hardware. It provides a high-level API advanced users can use to interface
with the National Instruments FOUNDATION™ Fieldbus communication stack
and hardware.

Configurator
Most NI-FBUS users use the NI-FBUS Configurator. In addition to
providing the functionality of the NI-FBUS Communications Manager in a
graphical format, it includes additional functionality to allow you to
configure a Fieldbus network. It can automatically generate the schedule
for the network and configure field devices and hosts to transmit and
receive alarms and trends.

Chapter 1 Introduction

© National Instruments Corporation 1-3 NI-FBUS Hardware and Software User Manual

Monitor
The NI-FBUS Monitor helps you monitor and debug Fieldbus data traffic.
It symbolically decodes data packets from the Fieldbus, monitors the live
list, and performs statistical analysis of packets. You can use the NI-FBUS
Monitor to diagnose the communication of H1 network or debug the
development of device.

You can use FOUNDATION™ Fieldbus products with National Instruments
HMI software packages, including Lookout and LabVIEW DSC. And you
can also use third-party HMI software through NI-FBUS OPC Server.

© National Instruments Corporation 2-1 NI-FBUS Hardware and Software User Manual

2
Installation and Configuration

This chapter contains installation and configuration instructions for
PCI-FBUS, PCMCIA-FBUS, USB-8486, and the FBUS-HSE/H1 linking
device.

Note Install the NI-FBUS software before you install the hardware.

Installing the Software
Complete the following steps to install the NI-FBUS software.

Caution If you are reinstalling the NI-FBUS software over a previous version, write down
your card configuration and any port configuration parameters you changed from their
defaults. Reinstalling the software may cause you to lose any existing card and port
configuration information.

1. Log in as Administrator or as a user that has Administrator
privileges.

2. Insert the NI-FBUS Software for Windows CD into the CD-ROM
drive.

If the installer does not launch automatically, navigate to the CD using
Windows Explorer and launch the autorun.exe file from the CD.

3. The interactive setup program guides you through the necessary steps
to install the NI-FBUS software. You may go back and change values
where appropriate by clicking Back. You can exit the setup where
appropriate by clicking Cancel.

4. Power down your computer when the setup is complete.

5. Continue to the Installing the Hardware section to configure and
install your hardware.

Chapter 2 Installation and Configuration

NI-FBUS Hardware and Software User Manual 2-2 ni.com

Installing the Hardware
This section describe how to install your PCI-FBUS, PCMCIA-FBUS,
USB-8486, and FBUS-HSE/H1 linking device.

Note Here, the term PCI-FBUS represents PCI-FBUS/2, and the term PCMCIA-FBUS
represents PCMCIA-FBUS, PCMCIA-FBUS/2, PCMCIA-FBUS Series 2, and
PCMCIA-FBUS/2 Series 2.

Install Your PCI-FBUS Card

Caution Before you remove the card from the package, touch the antistatic plastic package
to a metal part of the system chassis to discharge electrostatic energy, which can damage
several components on the PCI-FBUS card.

To install the PCI-FBUS card, complete the following steps.

1. Shut down and power off the computer. Keep the computer plugged in
so that it remains grounded while you install the PCI-FBUS card.

2. Remove the top cover or access port of the I/O channel.

3. Remove the expansion slot cover on the back panel of the computer.

4. As shown in Figure 2-1, insert the PCI-FBUS card into any unused PCI
slot with the Fieldbus connector protruding from the opening on the
back panel. Make sure all pins are inserted an equal depth into the
connector. Although it might be a tight fit, do not force the card into
place.

Chapter 2 Installation and Configuration

© National Instruments Corporation 2-3 NI-FBUS Hardware and Software User Manual

Figure 2-1. Installing the PCI-FBUS Card

5. Screw the mounting bracket of the PCI-FBUS card to the back panel
rail of the computer.

6. Keep the top cover or access port off until you have verified that the
hardware resources do not conflict.

7. Power on the computer.

8. Launch the Interface Configuration Utility. Make sure that the
PCI-FBUS card is listed and enabled.

9. Close the Interface Configuration Utility and start the NI-FBUS
Communications Manager or NI-FBUS Configurator.

Install Your PCMCIA-FBUS Card

Caution Before you remove the card from the package, touch the antistatic plastic package
to a metal part of the system chassis to discharge electrostatic energy, which can damage
several components on the PCMCIA-FBUS card.

Personal
Computer

PCI/ISA Slot

PCI-FBUS

Chapter 2 Installation and Configuration

NI-FBUS Hardware and Software User Manual 2-4 ni.com

To install the PCMCIA-FBUS card, complete the following steps.

1. Power on the computer and allow the operating system to boot.

2. Insert the card into a free PCMCIA (or Cardbus) socket. The card has
no jumpers or switches to set. Figure 2-2 shows how to insert the
PCMCIA-FBUS and how to connect the PCMCIA-FBUS cable
and connector to the PCMCIA-FBUS card. However, the
PCMCIA-FBUS/2 card has two connectors. Refer to Chapter 3,
Connector and Cabling, for more information about these
two connectors.

Figure 2-2. Inserting the PCMCIA-FBUS Card

3. Connect the PCMCIA-FBUS to the Fieldbus network.
Your kit contains a PCMCIA-FBUS cable. Refer to Chapter 3,
Connector and Cabling, if you need a longer cable than the
PCMCIA-FBUS cable provided.

1 Portable Computer 2 PCMCIA Socket 3 PCMCIA-FBUS Cable

1

2
33

Chapter 2 Installation and Configuration

© National Instruments Corporation 2-5 NI-FBUS Hardware and Software User Manual

Install Your USB-8486

Caution Operate the USB-8486 only as described in the operating instructions. Do not
unplug the USB-8486 when the NI-FBUS software is running.

The USB-8486 has the following two variants:

• USB-8486 without screw retention and mounting option

• USB-8486 with screw retention and mounting option

You can connect the USB-8486 without screw retention and mounting
option to a desktop PC or a laptop PC.

Figure 2-3. Connecting the USB-8486 to a Desktop PC

1 Desktop PC 2 USB-8486 3 DB-9 Connector

1

3

2

Chapter 2 Installation and Configuration

NI-FBUS Hardware and Software User Manual 2-6 ni.com

Figure 2-4. Connecting the USB-8486 to a Laptop PC

To install the USB-8486, complete the following steps.

1. Power on the computer and allow the operating system to boot.

2. Insert the USB-8486 into a free USB port, as shown in Figure 2-3 and
Figure 2-4.

3. Connect the USB-8486 to the Fieldbus network. Refer to the
USB-8486 section of Chapter 3, Connector and Cabling, for more
information about the connectors.

4. Launch the Interface Configuration Utility.

5. Right-click the USB-8486 to enable if it is disabled.

6. Close the Interface Configuration Utility and start the NI-FBUS
Communications Manager or NI-FBUS Configurator.

1 Portable Computer 2 USB Port 3 USB-8486 4 DB-9 Connector

1

2

3

4

Chapter 2 Installation and Configuration

© National Instruments Corporation 2-7 NI-FBUS Hardware and Software User Manual

Mount and Connect Your USB-8486
You can attach the USB-8486 with screw retention and mounting option to
a CompactRIO. This device provides the following mounting options:

• DIN mount using the unthreaded DIN rail mounting holes

• Panel mount using the panel mount notch and tab

DIN Rail Mounting
You can use the DIN-rail mounting kit to mount your USB-8486 to a
standard DIN rail, as shown in Figure 2-5.

Figure 2-5. Fastening a DIN Rail Clip to the USB-8486

1 USB-8486 2 DIN Rail Clip 3 Thread-Forming Screws

1
3

2

Chapter 2 Installation and Configuration

NI-FBUS Hardware and Software User Manual 2-8 ni.com

Complete the following steps to mount the device to a DIN rail vertically
by using the unthreaded mounting holes.

1. Fasten a DIN rail clip to the device using a #1 Phillips screwdriver and
four thread-forming screws included in the DIN-rail mounting kit.
Tighten the screws to a torque of 0.76 N · m (6.7 lb · in.). Figure 2-5
shows a DIN rail clip being attached to the device.

2. Clip the device onto the DIN rail as shown in Figure 2-6.

Note Using the thread-forming screws permanently affixes the DIN rail clip to the device.
Unscrewing and reinstalling the thread-forming screws produces a compromised
connection between the DIN rail and the device.

Figure 2-6. Clipping the USB-8486 to a DIN Rail

1 DIN Rail 2 DIN Rail Clip 3 USB-8486

1

2

3

Chapter 2 Installation and Configuration

© National Instruments Corporation 2-9 NI-FBUS Hardware and Software User Manual

You can mount the device to a DIN rail horizontally by using the additional
screw positions.

Panel Mounting
You can use #8 or M4 pan head screws to mount the USB-8486 to a board
or panel, as shown in Figure 2-7.

Figure 2-7. Mounting the USB-8486 to a Broad or Panel

1 #8 or M4 Pan Head Screw
2 USB-8486

3 #8 or M4 Pan Head Screw

1

2 3

Chapter 2 Installation and Configuration

NI-FBUS Hardware and Software User Manual 2-10 ni.com

To mount the USB-8486 to a board or panel, complete the following steps:

1. Screw a #8 or M4 pan head screw into the lower point on the panel.

2. Set the USB-8486 on the screw by fitting the screw head into the
bottom screw notch on the underside of the enclosure.

3. Screw a #8 or M4 pan head screw through the upper mounting tab on
the USB-8486.

Figure 2-8 shows the distance between the bottom screw notch and the
upper mounting tab on the USB-8486.

Figure 2-8. Dimensions of the Mounting Tab and Notch

15.24 mm
(0.600 in.)

 78.22 mm
(3.079 in.)

Chapter 2 Installation and Configuration

© National Instruments Corporation 2-11 NI-FBUS Hardware and Software User Manual

You then can connect the mounted USB-8486 to a CompactRIO, as shown
in Figure 2-9.

Figure 2-9. Connecting the USB-8486 to a CompactRIO

To install the USB-8486 on a CompactRIO target, complete the following
steps:

1. Power on the CompactRIO.

2. Insert the USB-8486 into the USB port, as shown in Figure 2-9.

3. Connect the USB-8486 to the Fieldbus network. Refer to the
USB-8486 section of Chapter 3, Connector and Cabling, for more
information about the connectors.

1 DB-9 Connector
2 USB-8486

3 USB Plug with Retention Thumbscrew
4 CompactRIO

1 2

3

4

Chapter 2 Installation and Configuration

NI-FBUS Hardware and Software User Manual 2-12 ni.com

4. Launch the Interface Configuration Utility on a computer to detect the
USB-8486 remotely.

5. Right-click the USB-8486 to enable if it is disabled.

6. Close the Interface Configuration Utility and start the NI-FBUS
Communications Manager or NI-FBUS Configurator.

Install Your FBUS-HSE/H1 LD
The FBUS-HSE/H1 LD has a simple rail clip for reliable mounting onto a
standard 35 mm DIN rail.

To install the FBUS-HSE/H1 LD, complete the following steps.

1. Use a flathead screwdriver to open the DIN rail clip to the unlocked
position, as shown in Figure 2-10.

Figure 2-10. DIN Rail Clip

Rail Clip Locked Rail Clip Unlocked

Chapter 2 Installation and Configuration

© National Instruments Corporation 2-13 NI-FBUS Hardware and Software User Manual

2. Hook the lip on the rear of the FBUS-HSE/H1 LD onto the top of a
35 mm DIN rail and press the FBUS-HSE/H1 LD down onto the
DIN rail, as shown in Figure 2-11.

Figure 2-11. Mounting the FBUS-HSE/H1 LD on a DIN Rail

3. Slide the FBUS-HSE/H1 LD to the desired position along the DIN rail.
After the FBUS-HSE/H1 LD is in position, lock it to the DIN rail by
pushing the rail clip to the locked position, as shown in Figure 2-10.

4. Connect the RJ-45 Ethernet port of the FBUS-HSE/H1 LD to an
Ethernet hub using a standard Category 5 Ethernet cable.

Note Do not use a cable longer than 100 m. If you are using a 10 Mbps Ethernet, National
Instruments recommends using a Category 5 shielded twisted-pair Ethernet cable.

1 Cover 2 Lip 3 35 mm DIN Rail 4 Press on to Rail

4

1

2

3

Chapter 2 Installation and Configuration

NI-FBUS Hardware and Software User Manual 2-14 ni.com

5. Figure 2-12 shows the power, H1, and Ethernet connectors on the
FBUS-HSE/H1 LD.

Figure 2-12. Connectors on the FBUS-HSE/H1 LD

6. Use the Fieldbus cable with 9-pin female D-sub connector to connect
the H1 ports of FBUS-HSE/H1 LD to a Fieldbus network.

1 H1 Port 1 2 H1 Port 2 3 Power 4 Ethernet

1 2 3

4

Chapter 2 Installation and Configuration

© National Instruments Corporation 2-15 NI-FBUS Hardware and Software User Manual

7. Connect the primary 11–30 VDC power supply to the center V and
C pair with the positive and negative wires on your power cable in the
V and C terminals, respectively. You can connect an optional backup
power supply to the left V and C pair. The power connector is a 6-pin
screw terminal power connector whose pinout is shown in Figure 2-13.

Figure 2-13. FBUS-HSE/H1 Power Connector Pinout

8. Power on your FBUS-HSE/H1 LD. At power-up, the FBUS-HSE/H1
LD runs a set of power-on self tests (POST) that take several seconds,
and the green POWER LED is lit. For more information about reading
the POST status, refer to the LED Indicators section of Appendix B,
Troubleshooting and Common Questions.

Note If you are using the third-party HSE/H1 linking device, refer to the related user
manual or reference materials to install the hardware.

Setting the Communication Parameters and
Interface Name

Complete the following steps to use the NI-FBUS Interface Configuration
utility to set the Fieldbus communication parameters and interface name.

1. Start the NI-FBUS Interface Configuration utility by selecting Start»
All Programs»National Instruments»NI-FBUS»Utilities»
Interface Configuration Utility.

2. Select the port you want to edit, and click the Edit button.

The NI-FBUS Interface Configuration Utility displays the default
interface name and some configuration information.

v
v v

c c
c

11-30 VDC
Backup Power

Supply
(Optional)

+
–

+
–

11-30 VDC
Primary Power

Supply

V

C

To Adjacent Device
(Optional Connection)

Chapter 2 Installation and Configuration

NI-FBUS Hardware and Software User Manual 2-16 ni.com

3. Enter an interface name for the port, or use the default name.
The interface name is for local use on the PC.

4. Enter a unique tag in the Device Tag field, or use the default device
tag. The device tag is the name that will be visible on the Fieldbus
network to the other devices.

5. Your interface must be given either a fixed or visitor device address for
you to start using NI-FBUS. This address must be unique on the link
to which the interface is connected.

a. To assign a fixed address to your Fieldbus interface, choose Fixed
Address and enter a value in the range 0x10 to 0xF7.

By convention, the lower addresses starting at 0x10 are usually used
for interface boards and link masters. Upper addresses, starting at
0xF7 and working down, are generally used for other devices.
Using a lower address for your interface will reduce the likelihood
that the interface will conflict with another device on the bus.

b. If you want your interface to be a temporary device that you do not
intend to connect to the Fieldbus for an extended time, choose
Visitor Address. Over a long period of time, using a visitor address
could break VCR endpoints and cause VCR_FULL_ERROR errors.

c. If you want third-party Fieldbus configuration software to assign
an address to your interface over the Fieldbus, choose Default
Address. You should only choose to use a default address when
you want third-party configuration software to assign a permanent
address. A device at a default address cannot be communicated
with until a permanent address has been assigned by the
configuration software.

6. Select a Device Type. You should choose to use Link Master Device.

7. Make sure that NI-FBUS is selected for Usage, unless you will be
using the board in conjunction with the NI-FBUS Monitor software.

If you are using this interface as a bus monitor, the other interface
(if this is a two-port board) cannot be used for NI-FBUS. This means
that you must have another link master on the link, either another
NI-FBUS interface device or a device with link master capabilities.

NI-FBUS software assigns default values for other network
communication parameters.

Caution Do not modify the Advanced parameters without good reason. If you must
modify parameters for certain devices, the device manufacturer will recommend settings.
Modifying these parameters can have an adverse affect on data throughput rates. If settings
are incorrectly modified, some devices might disappear off the bus.

Chapter 2 Installation and Configuration

© National Instruments Corporation 2-17 NI-FBUS Hardware and Software User Manual

8. Click OK twice to exit the configuration utility.

9. Restart the NIFB process for the changes you made in the NI-FBUS
Interface Configuration Utility to take effect.

10. Replace the top cover on your computer if you have not done so
already.

Testing the Installation
Start the NIFB process by selecting Start»All Programs»
National Instruments»NI-FBUS»NI-FBUS Communications Manager.

If NI-FBUS does not start up successfully, the base memory address or
Fieldbus network address is incorrect. If the NIFB process does not start up
successfully, refer to Appendix B, Troubleshooting and Common Questions.

Changing or Deleting Existing Interface Information
To change or delete information about any interface, complete the
following steps.

1. Select Start»All Programs»National Instruments»NI-FBUS»
Utilities»Interface Configuration Utility.

2. Click the Boardx icon, where x refers to the board number of the
interface you want to change or delete.

3. Click the Edit button. You can edit the interface configuration
information that you entered earlier, or click Delete to delete this
interface entirely.

Interfaces are numbered beginning with zero. If you delete an interface,
the NI-FBUS Interface Configuration Utility renumbers all the remaining
interfaces. For example, if you delete Board1, it appears that you deleted
the last interface, because all the remaining interface numbers are
decreased by one automatically, as illustrated in Table 2-1.

Table 2-1. Board Renumbering

Original Address Address after Deleting Board1

Board0 Board0

Board1 (deleted)

Board2 Board1

Board3 Board2

Chapter 2 Installation and Configuration

NI-FBUS Hardware and Software User Manual 2-18 ni.com

Restart the NI-FBUS Interface Configuration utility to make sure the
interface has been removed.

To reinstall the interface, refer to the installation and configuration
instructions earlier in this chapter.

Note If one USB-8486 is unplugged and you want to use other interfaces in the system,
delete this USB-8486 from the Interface Configuration Utility before running the NIFB
process.

Importing Device Descriptions
The device description files contain information about the types of blocks
and parameters supported by your Fieldbus device, along with online help
describing the uses of given parameters. If your Fieldbus device uses
manufacturer-specific device description files, you must import the device
description files shipped with the device or available from the device
manufacturer. To do so, complete the following steps.

1. Insert the device description disk or CD, if supplied by your Fieldbus
device manufacturer, into the disk drive or CD-ROM drive of the host
computer.

2. Select Start»All Programs»National Instruments»NI-FBUS»
Utilities»Interface Configuration Utility to run the Interface
Configuration utility.

3. Click the Import DD/CFF button. The Import DD/CFF dialog
box opens.

4. Click the Browse button, browse to the .cff capability file path or
.ffo device description file path, and click Open. Typically, the
device description for your Fieldbus device is supplied on a disk from
the manufacturer; or you can download the DD/CFF files from the
Fieldbus Foundation website. For each device, there is one capability
file and two device description files. The capability file ends in .cff.
The DD file ends in .ffo or .ff5. The DD symbol file ends in .sym
or .sy5. Select the .cff file, and the corresponding .ffo and .sym
files (or .ff5 and .sy5 files) will be imported automatically. Or select
the .ffo or .ff5 file, and the corresponding .sym or .sy5 file will
be imported automatically. The DD file name will be in the form
Digit Digit Digit Digit.ffo (for example, 0101.ffo).

Note The .cff file is the capability file, which is mainly used for offline configuration.
With the capability file and DD files, you can create virtual devices and make configuration
under offline mode without any physical device. The CFF file name will be in the form
Digit Digit Digit Digit Digit Digit.cff (for example, 020101.cff).

Chapter 2 Installation and Configuration

© National Instruments Corporation 2-19 NI-FBUS Hardware and Software User Manual

5. Click OK. A window will open displaying the full path to which the
DD files were copied.

6. Click OK again.

Note If you are importing device descriptions for multiple devices, you might see that they
can have the same filenames. Each file contains information about the device and its
manufacturer, and will be placed appropriately in the hierarchy under the base directory.

7. If necessary, click the DD Info button to change the base directory or
standard dictionary. The DD Info dialog box opens.

8. If the base directory field is blank, enter a base directory. The base
directory you enter here will be where NI-FBUS looks for all device
descriptions. Do not change the base directory after you have started
importing device descriptions. Otherwise, NI-FBUS will not be able
to find the device descriptions you previously imported. Your device
description files will automatically be placed in the appropriate
manufacturer ID subdirectory under this base directory.

Your base directory will include one folder for each different
manufacturer for which you have imported a device description.
For example, if you import the device description for a National
Instruments device, you will find a folder called 4e4943. This is the
National Instruments FOUNDATION™ Fieldbus device manufacturer
ID number.

The next layer of folders is the device type.

Underneath this layer of directories you will find the individual device
description files.

9. Click the Browse button to select the standard text dictionary provided
with NI-FBUS. The text dictionary has a .dct extension.

© National Instruments Corporation 3-1 NI-FBUS Hardware and Software User Manual

3
Connector and Cabling

This chapter provides hardware connector and interface cabling
information for PCI-FBUS, PCMCIA-FBUS, USB-8486, and
FBUS-HSE/H1 linking devices.

PCI-FBUS/2
This section contains information about the pinout of the PCI-FBUS
connectors.

Fieldbus Cable Connector Pinout
To make a Fieldbus cable, ensure that pins 6 and 7 are used for the Fieldbus
signals as shown in Figure 3-1. The cable must also follow the technical
specifications listed in the document Fieldbus Standard for Use in
Industrial Control Systems, Part 2, ISA-S50.02.1992. Refer to Figure 3-1
for the connector pinout of the PCI-FBUS.

Figure 3-1. Fieldbus Connector Pinout for the PCI-FBUS

1
2

3
4

5

6
7

8
9

No Connection

No Connection

No Connection

No Connection

No Connection

No Connection

No Connection

Data –

Data +

Chapter 3 Connector and Cabling

NI-FBUS Hardware and Software User Manual 3-2 ni.com

PCMCIA-FBUS
This section contains information about the pinout of the PCMCIA-FBUS
connectors.

Pinout Information
A PCMCIA-FBUS cable has been included in your kit. The following
figures show the pinout of the PCMCIA-FBUS connectors so you can
make your own cable if you need a longer cable than the one provided in
your kit.

Figure 3-2 shows the PCMCIA-FBUS cable. An arrow on the cable points
to pin 1 of the screw terminal block.

Figure 3-2. PCMCIA-FBUS Cable

The PCMCIA-FBUS/2 cable has two Fieldbus connectors that are similar
to the one shown in Figure 3-2. The connector labeled PCMCIA-FBUS,
PORT 1 is the connector for Fieldbus port 1 and the connector labeled
PCMCIA-FBUS, PORT 2 is the connector for Fieldbus port 2. Refer
to Figure 3-3 and Figure 3-4 for the pinouts of both connectors.

J2

J1

PCMCIA-FBUS, PORT 1

V-
D-

SH
D+

V+

Chapter 3 Connector and Cabling

© National Instruments Corporation 3-3 NI-FBUS Hardware and Software User Manual

Figure 3-3 shows J1, the Fieldbus connector pinout.

Figure 3-3. Fieldbus Connector Pinout

Figure 3-4 shows J2, the screw terminal block pinout.

Figure 3-4. Screw Terminal Block Pinout

The pinout of the PCMCIA-FBUS uses pins 6 and 7 of the J1 connector
for the Fieldbus signals as specified in the Fieldbus Standard for Use in
Industrial Control Systems, Part 2, ISA-S50.02.1992. Pins 2 and 4 of the
J2 screw terminal block provide an alternate connection to the Fieldbus.
However, the screw terminal block is not an independent link.

All of the signals on the screw terminal block provide a direct connection
to the 9-pin D-SUB. National Instruments provides the Power+ and Power–
connections as passive connections from the D-SUB to the screw terminal.
The PCMCIA-FBUS itself does not supply power to, or draw power from,
these pins.

No Connection

No Connection

No Connection

No Connection

No Connection

Power –

Power +

Data –

Data +

1
3

2
5

4

7
6

8
9

1
2
3
4
5

Power –
Data –
Shield
Data +
Power +

Chapter 3 Connector and Cabling

NI-FBUS Hardware and Software User Manual 3-4 ni.com

USB-8486
The USB-8486 hardware has a 9-pin male D-SUB (DB-9) connector for the
H1 port.

Figure 3-5 shows the male DB-9 connector pinout.

Figure 3-5. Male DB-9 Connector Pinout for the USB-8486

The pinout of the USB-8486 uses pins 6 and 7 of the connector for the
Fieldbus signals as specified in the Fieldbus Standard for Use in Industrial
Control Systems, Part 2, ISA-S50.02.1992.

9-Pin D-SUB (DB-9) Cable Information
A 2-meter cable has been included in your kit which converts the 9-pin
D-SUB connector to three wire pigtails.

Figure 3-6. DB-9 Cable for the USB-8486

1
2

3
4

5

6
7

8
9

No Connection

No Connection

No Connection

No Connection

No Connection

No Connection

No Connection

Data –

Data +

Chapter 3 Connector and Cabling

© National Instruments Corporation 3-5 NI-FBUS Hardware and Software User Manual

Figure 3-7 shows the pinout of the 9-pin D-SUB female connector so you
can make your own cable if you need a longer cable than the one provided
in your kit.

Figure 3-7. Pinout for 9-Pin D-SUB Female Connector of the DB-9 Cable

Table 3-1 provides the cable pigtail “pinout.”

All of the signals on the three wire pigtails provide a direct corresponding
connection to the 9-pin D-SUB.

FBUS-HSE/H1 Linking Device
This section contains information about the pinout of the FBUS-FBUS/H1
linking device connectors.

Table 3-1. Information for Cable Pigtails

Signal Color Size

Data + Red 22 AWG

Data – Black 22 AWG

Shield Green 22 AWG

5
4

3
2

1

9
8

7
6

No Connection

No Connection

No Connection

No Connection

No Connection

No Connection

No Connection

Data +

Data –

Chapter 3 Connector and Cabling

NI-FBUS Hardware and Software User Manual 3-6 ni.com

Ethernet Cable Pinouts
If you build your own cables, the following table shows the standard
Ethernet cable wiring connections for normal and crossover cables.

Figure 3-8 shows the connector pinouts for FBUS-HSE/H1 Ethernet
cables.

Figure 3-8. Ethernet Cable Layout

Table 3-2. Ethernet Cable Wiring Connections

Pin Connector 1
Connector 2

(Normal)
Connector 2
(Crossover)

1 White/Orange White/Orange White/Green

2 Orange Orange Green

3 White/Green White/Green White/Orange

4 Blue Blue Blue

5 White/Blue White/Blue White/Blue

6 Green Green Orange

7 White/brown White/Brown White/Brown

8 Brown Brown Brown

Pin 1 Pin 1 Pin 8Pin 8

Connector 1 Connector 2

Chapter 3 Connector and Cabling

© National Instruments Corporation 3-7 NI-FBUS Hardware and Software User Manual

Fieldbus H1 Pinout Information
The FBUS-HSE/H1 LD can be one of up to 32 devices connected to a
Fieldbus H1 network. The connection is made through one of the two 9-pin
male D-SUB Fieldbus H1 connectors on the FBUS-HSE/H1 LD, shown in
Figure 3-9.

Use a Fieldbus cable with a 9-pin female D-SUB connector to connect the
FBUS-HSE/H1 LD to a properly terminated Fieldbus network. When you
are only using an FBUS-HSE/H1 LD, the power hub is not being used for
power. For other FOUNDATION™ Fieldbus devices that use bus powering, you
would apply power to the hub, from which devices would get their power.
Refer to the Fieldbus Foundation Wiring and Installation 31.25 kbit/s,
Voltage Mode, Wire Medium Application Guide for specific information
about wiring and installing a Fieldbus network. If you want to make your
own Fieldbus cable, refer to the Fieldbus Standard for Use in Industrial
Control Systems, Part 2, ISA-S50.02.1992. The FBUS-HSE/H1 LD
Fieldbus connector pinout is shown in Figure 3-9.

Figure 3-9. FBUS-HSE/H1 LD Connector Pinout

1 2 3 4 5

6 7 8 9

N
C

N
C

N
C

N
C

N
C

N
C

N
C

D
ata +

D
ata –

NC = No Connection

© National Instruments Corporation 4-1 NI-FBUS Hardware and Software User Manual

4
NI-FBUS CM Software

This chapter provides information on the NI-FBUS Communications
Manager (CM) software. It assumes that you are already familiar with your
Microsoft operating system.

NI-FBUS Communications Manager Overview
The NI-FBUS Communications Manager implements a high-level
Application Program Interface (API) that facilitates communication with
the National Instruments FOUNDATION™ Fieldbus communication stack and
hardware. The main purpose of the NI-FBUS Communications Manager
is to make the details of the Fieldbus communication protocols transparent
by providing an API that supports TAG.PARAMETER access. You need
a general knowledge of the Fieldbus architecture (outlined in the
FOUNDATIONTM Fieldbus Overview document) to understand and use the
NI-FBUS Communications Manager.

The NI-FBUS Communications Manager handles communication between
the communication stack and the user application. It also handles the details
of communicating with the Fieldbus Messaging Specification (FMS) and
lower layers of the communications stack. The NI-FBUS Communications
Manager hides the low-level details of Virtual Communication
Relationships (VCRs), connection management, addresses, and Object
Dictionary indices, and offers name access to physical devices, Virtual
Field Devices (VFDs), function blocks, transducer blocks, and parameters.

The NI-FBUS Communications Manager API is independent of the
National Instruments Fieldbus hardware and your operating system.
With the NI-FBUS Communications Manager, you can plug multiple
National Instruments Fieldbus interfaces of any type into the same PC
and use them through the NI-FBUS Communications Manager API.
NI-FBUS is capable of using the USB-8486, PCMCIA-FBUS, PCI-FBUS,
ControlNet-to-Fieldbus linking devices, Ethernet adapters, and HSE
linking devices as its interface.

The NI-FBUS Communications Manager is interface-independent
because this tool does not require you to specify which Fieldbus interface
to use in NI-FBUS Communications Manager calls. It determines the

Chapter 4 NI-FBUS CM Software

NI-FBUS Hardware and Software User Manual 4-2 ni.com

interface over which to send certain Fieldbus messages. The NI-FBUS
Communications Manager lets you write applications that are as
independent as possible of the actual configuration of your Fieldbus
interfaces.

The NI-FBUS Communications Manager API is useful for developing
host applications. Typical examples are function block tuning software
packages and applications for monitoring a function block, diagnosing
a network, and developing interfaces to Human-Machine Interface (HMI)
packages.

Installing the OPC NI-FBUS Server
The NI-FBUS installer automatically installs the OPC NI-FBUS server.
However, it also can be installed manually. To do this, open a DOS
command prompt and run the following commands from the target
directory:

regsvr32 opccomn_ps.dll

regsvr32 opcproxy.dll

nifb_opcda.exe /regserver

NI-FBUS Functions Overview
The NI-FBUS functions are classified into four categories:

• Administrative functions

• Core functions

• Alert and trend functions

• Device description functions

All NI-FBUS functions are described in detail in the NI-FBUS
Communications Manager Function Reference Manual.

Administrative Functions
You can use the administrative functions to get the list of physical devices
in a link, get a list of virtual field devices in a physical device, and get a list
of blocks (resource, function, transducer) from a virtual field device. The
administrative functions include nifGetDeviceList, nifGetVfdList,
and nifGetBlockList. Typically, you must call these before you call a
core, alert, or any other administrative function.

Chapter 4 NI-FBUS CM Software

© National Instruments Corporation 4-3 NI-FBUS Hardware and Software User Manual

Because you can use the NI-FBUS Communications Manager to
communicate with each of the FOUNDATION™ Fieldbus entities, such as
links, physical devices, virtual field devices, and blocks, there are nifOpen
calls for you to open and get a descriptor to each of these entities.

Example: Using Administrative Functions
Suppose you want to get a descriptor to a block with nifOpenBlock
before you read or write the block parameters. Then you want to open
a block using the block’s tag.

To open a block with the tag TI101_Analog_Input, invoke
nifOpenBlock(sessionDesc, "TI101_Analog_Input",

&blockDesc), where sessionDesc is the descriptor of the session that
you established with the NI-FBUS Communications Manager. The
NI-FBUS Communications Manager returns the descriptor of the block
that you opened in blockDesc. From then on, you can use this descriptor
for calls associated with this block.

Core Functions
Core NI-FBUS functions are the functions that deal with processing
function block parameters—primarily the nifReadObject and
nifWriteObject functions, which read and write block parameters.
The NI-FBUS Communications Manager encapsulates the device
description services with the core function nifGetObjectAttributes,
which gives you the device description attributes of any parameter.

Function blocks contain view or display objects. As the name implies, these
objects are a collection of parameters in function blocks that are typically
displayed in an operator console. Four view objects are defined for each of
the ten standard function blocks in the FOUNDATION™ Fieldbus specification.

The following examples are a summary of the NI-FBUS Communications
Manager because they demonstrate that details such as VCRs, indices, and
connections are hidden by the TAG.PARAMETER access provided by the
NI-FBUS Communications Manager. However, to correctly write an
application using the NI-FBUS Communications Manager, you must be
familiar with the Foundation Specification: Function Block Application
Process, Parts 1 and 2 document—the standard blocks, their parameters,
and their syntax—and have an idea of the architecture of Fieldbus. Refer to
the FOUNDATIONTM Fieldbus Overview document for an outline of Fieldbus
architecture.

Chapter 4 NI-FBUS CM Software

NI-FBUS Hardware and Software User Manual 4-4 ni.com

Example: Using Core Functions
Suppose the object VIEW_1 for a PID function block consists of GAIN,
RATE, SP, CAS_IN, MODE, and ALARM_SUM parameters of the PID function
block. You want to get the values of all these parameters using a single read
of the VIEW_1 object. If the tag of a PID function block is TIC101_PID,
you can read the VIEW_1 object by executing the following function call:

nifReadObject(sessionDesc, "TIC101_PID.VIEW_1", buffer,

&cnt)

Notice that it is not necessary to have a block descriptor to read the
parameters of an object. If you do have the block descriptor, you can read
the object with the following call:

nifReadObject(blockDesc, "VIEW_1", buffer, &cnt)

You can get the block descriptor using nifOpenBlock, which returns
blockDesc.

If you wanted to change the setpoint of the preceding PID block, you can
do so with the following call:

nifWriteObject(sessionDesc, "TIC101_PID.SP", buffer,

cnt)

Alert and Trend Functions
When a properly configured device detects an alarm condition, the device
broadcasts the data. A host device receives the alarm, then sends a
communication acknowledgment and an operator acknowledgment to the
field device. The field device also can collect trends based on a configured
sample type and interval. When the field device collects 16 samples, it
broadcasts the trend data on the Fieldbus. Any number of interested hosts
can collect this data. For more details, refer to the Foundation
Specification: Function Block Application Process, Part 1 document.

With a program such as the NI-FBUS Configurator, you can configure
the FOUNDATION™ Fieldbus field devices to broadcast alert and trend data.

The NI-FBUS Communications Manager has functions to receive
trends and alerts from configured devices and to perform operator
acknowledgment on alerts. nifWaitAlert and nifWaitAlert2 lets you
wait for an alert from any device in a link, any function block in a physical
device, or a specific function block, depending on the type of descriptor
that you pass to it. When the NI-FBUS Communications Manager receives
an alert, it returns a structure containing information about the alert.

Chapter 4 NI-FBUS CM Software

© National Instruments Corporation 4-5 NI-FBUS Hardware and Software User Manual

The NI-FBUS Communications Manager sends the communication
acknowledgment to the device automatically. The NI-FBUS
Communications Manager provides a separate function,
nifAcknowledgeAlarm, to send the operator acknowledgment.

Similarly, nifWaitTrend lets you wait for a trend from any device in
a link, any function block in a physical device, or a specific function
block, depending on the type of descriptor you pass to it. When the
NI-FBUS Communications Manager receives a trend, it returns a structure
containing information about the trend along with the trend data itself.

nifWaitAlert, nifWaitAlert2, and nifWaitTrend wait until an alert
or trend is received before returning, so it might be preferable to have
separate threads invoke these functions.

Device Description Functions
The NI-FBUS Communications Manager gives your applications access to
device descriptions, which are binary files that describe the characteristics
of blocks and parameters. Your application can use the NI-FBUS function
nifGetObjectAttributes to decode attributes of parameters including
data type, data size, help strings, and other attributes defined in the Device
Description Language Specification document. In addition, device
description symbol files are used automatically to assist in allowing your
applications to access parameters by name.

The NI-FBUS Communications Manager ships with device descriptions
for all standard FOUNDATION™ Fieldbus function blocks. The NI-FBUS
Communications Manager provides attributes for the parameters of all
standard function blocks, even if the device manufacturers for your devices
did not provide device descriptions. However, to get the attributes of
parameters of nonstandard (not FOUNDATION™ Fieldbus-defined) blocks, the
NI-FBUS Communications Manager requires that the device manufacturer
provide the device description.

NI-FBUS supports device description menus and methods. When
NI-FBUS attempts to locate a device description file (.ffo and .sym) for
a device, it uses the file with the latest device description revision for a
given MANUFAC_ID, DEV_TYPE, and DEV_REV. For more information about
device descriptions, refer to the FOUNDATIONTM Fieldbus Overview document
or your Getting Started manual.

Chapter 4 NI-FBUS CM Software

NI-FBUS Hardware and Software User Manual 4-6 ni.com

Using the NI-FBUS Communications Manager Process
For any of your NI-FBUS Communications Manager applications to
run correctly, you must successfully launch the NIFB process. The NIFB
process is the medium by which your application communicates with the
devices on the Fieldbus network. The NIFB process receives requests
from your application and passes them on to the specified Fieldbus device
through the Fieldbus interface connected to your machine. Refer to the
Start the NIFB Process chapter in your Getting Started manual for
instructions on how to start the NIFB process.

At startup, the NIFB process downloads the FOUNDATION™ Fieldbus
communication stack file ffstack.bin or ffstack.usb.bin to the
Fieldbus interfaces connected to your machine. It then downloads the
communication stack configuration parameters, such as the Fieldbus
network address for the interface device and so on, to each interface device.
You can edit these parameters using the NI-FBUS Interface Configuration
utility by clicking the Advanced button on the dialog box for the Port
information. The advanced parameters affect the operation of the
communication stack and should only be changed if you are aware of the
effect of your changes on the stack.

You must make sure to specify a unique, non-default Fieldbus network
address for the NI-FBUS Communications Manager to work properly.
You can use a default address if another entity on the Fieldbus assigns
your interface a non-default address. You can change the address from the
NI-FBUS Interface Configuration utility in the Port dialog box. You must
restart the NI-FBUS Communications Manager for any changes you make
to take effect.

The NI-FBUS Communications Manager process features non-volatile
storage of all network parameters, including the last known Link Active
Schedule. After network parameters (including the Link Active Schedule)
are stored, the NI-FBUS Communications Manager automatically reloads
them to the interface on startup.

At installation time, the non-volatile copy of the schedule is empty, but you
can make the NI-FBUS Communications Manager store the non-volatile
Link Active Schedule by downloading it to your Fieldbus interface. To
download a Link Active Schedule to your Fieldbus interface, you can use
the NI-FBUS Dialog utility. Refer to the NI-FBUS Dialog Utility section
for an example of how to download the Link Active Schedule to your
Fieldbus interface. You also can use the NI-FBUS Configurator to
download a Link Active Schedule to your Fieldbus interface.

Chapter 4 NI-FBUS CM Software

© National Instruments Corporation 4-7 NI-FBUS Hardware and Software User Manual

Developing Your NI-FBUS Communications
Manager Application

This section contains information to help you develop your NI-FBUS
Communications Manager application.

Choose Your Level of Communication
While a few functions require a specific type of descriptor (for example,
nifGetDeviceList requires a link descriptor), many functions (such as
the core, alert, and trend functions) let you communicate using any type of
descriptor. With these functions, the descriptor type you choose depends on
what is most convenient for you in designing your application, because
there is no significant difference in performance between the different
types.

For example, if it is convenient for your application to use only a session
descriptor to keep track of tags for each block (so that you refer to
all parameters in BLOCKTAG.PARAMNAME format), you should write your
application this way. If it is easier for you to keep track of a descriptor
for each block rather than a tag for each block, you should open a block
descriptor for each block you are communicating with, keep track of that
descriptor value, and access parameters by PARAMNAME using the block
descriptor.

Choose to Access by Name or Index
The NI-FBUS Communications Manager supports access by name or
by index for all block parameters. National Instruments recommends that
you access all variables by name. Although access by index might be
slightly faster in some cases, an application cannot always reliably
determine indices.

The NI-FBUS Communications Manager may convert the parameter
name you specify to the final index that FOUNDATION™ Fieldbus protocols
must use to access the parameter over the network. The NI-FBUS
Communications Manager converts the name to an index using standard
FOUNDATION™ Fieldbus-specified methods, which include a check to the
device at run time to verify the index. If you hard-code indices, you will
have to modify them when the devices they are accessing become replaced,
upgraded, or have new blocks created on them.

Chapter 4 NI-FBUS CM Software

NI-FBUS Hardware and Software User Manual 4-8 ni.com

Choose to Write Single-Thread or Multi-Thread Applications
All NI-FBUS functions are synchronous, meaning that the calling
function is blocked until the NI-FBUS call completes. A Fieldbus device
usually takes tens of milliseconds to respond to a block parameter read or
write. It takes longer if any communication errors occur. The NI-FBUS
Communications Manager uses the protocol connections to communicate
with the devices. If a connection is lost, the NI-FBUS Communications
Manager tries to reestablish the connection. When a connection is lost,
an NI-FBUS read or write call may take several seconds to complete.

Single-Thread Applications
If potential delays like the ones discussed in the previous paragraph are
acceptable for your application, you can write your application or the
Fieldbus access part of your application as a single thread. Single-threaded
applications are easier to develop, debug, and test because you do not have
to consider exclusion between threads. If you are writing an application for
testing, monitoring, or configuring a single device, a single-threaded
application might be adequate.

Multi-Thread Applications
If your application monitors or tests several devices at a time,
communication delays might affect the throughput of your application
and therefore be unacceptable. If so, you can develop a multi-threaded
application to improve the performance of your application. There are
several ways to multi-thread your application.

If you are accessing information from function blocks or transducer blocks,
you might want to create a thread for each block. Each block’s thread reads
and writes information for that block. If creating a thread for each block is
excessive, you might consider an architecture in which you have a set of
threads dedicated to Fieldbus I/O. Your application can then interface with
I/O threads through a shared queue in which threads put their I/O requests.
When the I/O completes, the I/O threads can inform the application by
passing a message or some other synchronization scheme.

If your application performs trending or alarm handling, you might
want to have separate threads that perform these functions. You can
make a thread wait for a trend or alarm with the nifWaitTrend or
nifWaitAlert or nifWaitAlert2 function and then process the trend
or alarm when it arrives. If you are monitoring the live list (the current
list of devices on the bus), you may have a dedicated thread that calls
nifGetDeviceList because the call will not return until the live list
changes.

Chapter 4 NI-FBUS CM Software

© National Instruments Corporation 4-9 NI-FBUS Hardware and Software User Manual

Access Object Dictionary Entries
If you want to access object dictionary entries that do not reside in a block,
you can access them with an object dictionary index along with a virtual
field device descriptor. You can access trend and linkage objects by name
using a virtual field device descriptor. To access trend objects by name,
either from an application program or from the NI-FBUS Dialog utility, use
the name TREND.X, where X is a number from 1 to the number of trend
objects in the virtual field device. To access linkage objects, use
LINKAGE.X, where X is a number from 1 to the number of linkage objects
in the virtual field device. If X exceeds the number of linkage objects or
trend objects in the virtual field device, the NI-FBUS Communications
Manager returns the E_ORDINAL_NUM_OUT_OF_RANGE error code.

Access Management Information Base (MIB) Parameters
To access Management Information Base parameters directly, either
from a program or from the NI-FBUS Dialog utility, open the physical
device you want to communicate with and open a virtual field device
on the device with the tag MIB. You can use the resulting virtual field
device descriptor to access the MIB parameters by index or by their
names (as described in the FOUNDATIONTM Fieldbus Specification). For
example, to write the macrocycle duration, access the MIB parameter
MACROCYCLE_DURATION, and to read the live list, access the object
named LIVE_LIST_STATUS. This method works both on local interface
devices and on remote devices over the Fieldbus.

Some MIB parameters are elements of a list (such as the list of function
block schedule entries or VCR entries). You can use the name for these
items with a .X appended, where X is the element in the list you want to
access. For example, the first function block schedule entry in the MIB
is named FB_START_ENTRY.1, and the first VCR static entry in the MIB
is named VCR_STATIC_ENTRY.1. If X exceeds the number of objects of
that type in the MIB, the NI-FBUS Communications Manager returns
the E_ORDINAL_NUM_OUT_OF_RANGE error code.

Because most of these parameters have to do with network configuration,
a network configurator, such as the NI-FBUS Configurator, can best set
these parameters.

Keep in mind that the NI-FBUS Communications Manager manages some
MIB objects internally. For instance, the NI-FBUS Communications
Manager builds up internal data structures for some MIB objects, especially

Chapter 4 NI-FBUS CM Software

NI-FBUS Hardware and Software User Manual 4-10 ni.com

VCRs, and so on. Manually changing the existing VCRs through an MIB
descriptor can lead to problems with using the NI-FBUS Communications
Manager.

H1 Device MIB List Parameters
FB_START_ENTRY

MAX_TOKEN_HOLD_TIME

SCHEDULE_DESCRIPTOR

VCR_STATIC_ENTRY

VFD_REF_ENTRY

H1 Device MIB Parameters
AP_CLOCK_SYNC_INTERVAL

BOOT_OPERAT_FUNCTIONAL_CLASS

CHANNEL_STATES

CONFIGURED_LINK_SETTING

CURRENT_LINK_SETTING

CURRENT_TIME

DEV_ID

DLME_BASIC_CHARACTERISTICS

DLME_BASIC_INFO

DLME_LINK_MASTER_INFO

LINK_SCHEDULE_ACTIVATION

LINK_SCHEDULE_LIST_CHARACTERISTICS

LIVE_LIST_STATUS

LOCAL_TIME_DIFF

MACROCYCLE_DURATION

OPERATIONAL_POWERUP

PD_TAG

PLME_BASIC_CHARACTERISTICS

PLME_BASIC_INFO

PRIMARY_AP_TIME_PUBLISHER

PRIMARY_LINK_MASTER_FLAG

SM_SUPPORT

STACK_CAPABILITIES

T1

T2

T3

TIME_LAST_RCVD

TIME_PUBLISHER_ADDR

VCR_LIST_CHARACTERISTICS

VERSION_OF_SCHEDULE

Chapter 4 NI-FBUS CM Software

© National Instruments Corporation 4-11 NI-FBUS Hardware and Software User Manual

HSE Device MIB List Parameters
SCHEDULE_DESCRIPTOR

VFD_REF_ENTRY

CONFIGURED_SESSION_ENTRY

AUTOMATIC_SESSION_ENTRY

HSE_CONFIGURED_VCR_ENTRY

HSE_AUTOMATIC_VCR_ENTRY

HSE Device MIB Parameters
SM_SUPPORT

OPERATIONAL_POWERUP

LIST_OF_VERSION_NUMBERS

OPERATIONAL_IP_ADDRESS

LOCAL_IP_ADDRESS_ARRAY

SYNC_AND_SCHEDULING

LAST_SNTP_MESSAGE

SNTP_TIMESTAMPS

DEVICE_IDENTIFICATION

SCHEDULE_ACTIVATION_VARIABLE

SCHEDULE_LIST_CHARACTERISTICS

NM_CHARACTERISTICS

CONFIGURED_SESSION_LIST_HEADER

AUTOMATIC_SESSION_LIST_HEADER

HSE_CONFIGURED_VCR_LIST_HEADER

HSE_AUTOMATIC_VCR_LIST_HEADER

BRIDGE_CHARACTERISTICS

CURRENT_NMA_CONFIGURATION_ACCESS

PREVIOUS_NMA_CONFIGURATION_ACCESS

INTERFACE_ADDRESS_ARRAY

INTERFACE_DESIRED_STATE_ARRAY

INTERFACE_ACTUAL_STATE_ARRAY

Use the NI-FBUS Dialog Utility to Communicate with Devices
The NI-FBUS Dialog utility helps you perform simple tests of your whole
Fieldbus setup, including the NI-FBUS Communications Manager, your
interface board(s), and any devices you have. The NI-FBUS Dialog utility
has dialog boxes that call the NI-FBUS Communications Manager API,
allowing you to specify parameters and make NI-FBUS calls. For example,
you can use the NI-FBUS Dialog utility to get a list of devices on your
network, as well as view and set parameters in each device. For more
information on using the NI-FBUS Dialog utility, refer to the NI-FBUS
Dialog Utility section.

Chapter 4 NI-FBUS CM Software

NI-FBUS Hardware and Software User Manual 4-12 ni.com

Write Your Application
Use the following guidelines to make sure your application uses the
NI-FBUS Communications Manager interface properly.

• Always call nifOpenSession early in your program and check
the return value of the call. This check verifies that the NI-FBUS
Communications Manager process is running, which is a prerequisite
for your application to access the Fieldbus network. If this call fails,
your application should inform the user that the Fieldbus is currently
inaccessible.

• Always close any descriptors that you open before your program
exits, including session descriptors. The NI-FBUS Communications
Manager requires that your application close all descriptors that
it opens.

• Always check the return values from NI-FBUS calls. The NI-FBUS
Communications Manager is a high-level API and performs many
operations that can fail because of incorrect parameters, incorrect bus
configuration, or communication failures. An application that fails to
check return values might use output parameters from NI-FBUS calls
that are NULL or uninitialized, leading to incorrect behavior or a
program crash.

• If you plan to call any of the indefinitely-blocking functions including
nifGetDeviceList, nifWaitAlert, nifWaitAlert2, and
nifWaitTrend, you should probably use a separate descriptor for
these calls. To terminate these calls early, you have to close the
descriptor. Having a separate descriptor will ensure that terminating
these calls does not affect any other NI-FBUS calls your application
has pending.

• If the NI-FBUS Communications Manager stops for any reason,
any outstanding calls in your application complete with the error
E_SERVER_CONNECTION_LOST. At this point, all of the descriptors
that you have (including the session) are invalid. If you restart the
NI-FBUS Communications Manager, your application should recover
by opening a new session to the NI-FBUS Communications Manager
and opening all new descriptors. After this recovery procedure, your
application should be fully operational.

Chapter 4 NI-FBUS CM Software

© National Instruments Corporation 4-13 NI-FBUS Hardware and Software User Manual

Compile, Link, and Run Your Application
To compile, link, and execute your application, you must complete the
following:

• Add the line #include "nifbus.h" to any of your source files that
make NI-FBUS calls. The nifbus.h file is located in the includes
subdirectory of your installation. Also, make sure that the includes
subdirectory is included in your project’s settings.

• Link your application with nifb.lib, which is located in the
MS Visual C subdirectory of your installation.

• Ensure that nifb.dll is present in your Windows directory.
nifb.dll is an interface DLL required to interface to the NIFB
process. nifb.dll must be present when your application runs.

• Ensure that the NI-FBUS Communications Manager (NIFB process)
has started and is entirely initialized before your application makes its
first NI-FBUS call.

• Ensure your compiler has the structure padding or alignment
parameter set to eight bytes. This will allow proper communication
of data structures.

• The nifbus.h header file and nifb.lib library have been compiled
and linked with Microsoft Visual C/C++ version 6.0 or later.

Note NI-FBUS software supports 64-bit since version 4.0.1. To build a 64-bit application,
you must link your application with nifb64.lib. nifb64.dll should be automatically
installed in your Windows system directory.

Sample Programs
The NI-FBUS Communications Manager software includes four sample
programs: nifbtest.c, nifb_mt.c, nifbdd.c, and nifb_list.c.
These files provide you with some examples of NI-FBUS Communications
Manager API usage.

Because NI-FBUS uses a device description library from the FOUNDATION™
Fieldbus, the header files from the device description library also are part of
the NI-FBUS includes directory.

Chapter 4 NI-FBUS CM Software

NI-FBUS Hardware and Software User Manual 4-14 ni.com

NI-FBUS Dialog Utility

Note If you have the NI-FBUS Configurator, you generally will not want to use the dialog
utility, since the NI-FBUS Configurator has much more functionality and is much easier
to use.

The NI-FBUS Dialog utility allows you to interact with your devices over
the Fieldbus by opening descriptors, making single NI-FBUS calls, and
viewing the results. You might want to use the NI-FBUS Dialog utility
to verify installation and device operation, or to learn the NI-FBUS
Communications Manager API.

When you open the NI-FBUS Dialog utility, a window opens containing a
single item called Open Descriptors. This is the root of a tree that shows
an icon for each of the NI-FBUS descriptors you open using the NI-FBUS
Dialog utility. The area below the icon remains empty until you make an
NI-FBUS call to open a descriptor. When you open a descriptor, the
NI-FBUS Dialog utility adds an icon representing that descriptor.

You can use the NI-FBUS Dialog utility to perform operations on the
descriptors you have opened. Select the operation you want to perform on
a descriptor by right-clicking the descriptor icon and choosing an item on
the menu that appears, or by selecting the icon with a single click and
choosing an item on the Actions menu. The choices that appear on the
menu depend on the type of descriptor you have selected.

NI-FBUS Dialog Examples
These examples describe the typical steps you follow when using
the NI-FBUS Dialog utility. Before you begin the examples,
open the NI-FBUS Dialog utility through Start»All Programs»
National Instruments»NI-FBUS»Utilities»Dialog.

Example 1. Get a Device List
1. Open the NI-FBUS Dialog utility.

2. Right-click the Open Descriptors icon and select Open Session.

3. In the Open Session dialog box that appears, click the Open Session
button. The NI-FBUS Dialog utility makes an nifOpenSession call
to the NIFB process. This call opens a session descriptor, which
represents your connection to the NIFB process.

Chapter 4 NI-FBUS CM Software

© National Instruments Corporation 4-15 NI-FBUS Hardware and Software User Manual

If the call succeeds, the NIFB process is running and responding to
requests, and a new session descriptor is created under the Open
Descriptors icon. If the call fails, ensure that the NIFB process
is running and that it has not displayed any error message boxes
during startup. You can check this by maximizing and looking at
the nifb.exe console window. If the title bar does not end in
“(Running),” NI-FBUS did not start correctly.

4. Click the Session icon and then select the Actions menu.

The list that appears represents the NI-FBUS Communications
Manager API calls you can make with a session descriptor.

5. Select the GetInterfaceList function from the list of choices.
This choice displays the logical name of all known interfaces.

6. Highlight the interface name of your choice and click the OpenLink
button.

or

Open a link by selecting the OpenLink function and entering the
interface name.

7. Right-click the Link icon and select GetDeviceList. The NI-FBUS
Dialog utility displays a list of active devices on your Fieldbus link.
Your Fieldbus interface board also is included in this list.

Example 2. Download a Schedule to an Interface
1. Complete all the steps in the Example 1. Get a Device List section.

2. Select an interface board by clicking an entry in the device list that has
an asterisk (*) on its left.

3. Click the Open Device button. A new dialog box opens with the
identifying information for the interface board already filled in.

4. Click the Open Device button on the new dialog box. If the call
completes successfully, a new icon for the device descriptor appears
in the tree structure on the screen.

5. Right-click the new device icon, and select the DownloadLASSched
menu option. A new dialog box opens with identifying information for
the device already filled in.

Chapter 4 NI-FBUS CM Software

NI-FBUS Hardware and Software User Manual 4-16 ni.com

6. In the new dialog box, click Browse to locate the .ini file that
contains the LAS schedule you want to download, or enter the full path
to the file. For more information about using the LAS with an .ini
file, refer to Appendix B, Troubleshooting and Common Questions.

7. Click the Load & Activate button. The NI-FBUS Communications
Manager downloads the schedule to the interface board and activates
it immediately.

Example 3. Read a Parameter Using TAG.PARAM Access
1. Open the NI-FBUS Dialog utility.

2. Click the Actions menu and select Open Session.

3. Click the Open Session button. If the call succeeds, the NIFB process
is running and responding to requests, and a new session descriptor is
created under the Open Descriptors icon.

4. Right-click the session descriptor icon and select ReadObject.

5. In the dialog box that opens, enter the name of the parameter to read in
the BLOCKTAG.PARAM format, where BLOCKTAG is the tag of the block
containing the parameter, and PARAM is the name of the parameter. For
example, to read the OUT parameter of an Analog Input block called
FT-201, enter FT-201.OUT.

6. Click the Read button to perform the read operation. If the call
completes successfully, the NI-FBUS Dialog utility automatically
determines the type of the data and displays it in the Data box.
If the call fails, the error message appears in the Result box.

Example 4. Wait for a Trend

Note You will not be able to receive any trends unless you have configured a device
to generate them and configured an interface to receive them. Use your configuration
software package to do this. You also can view the trend from the NI-FBUS Dialog utility
as numbers only (with no graphs).

1. Open the NI-FBUS Dialog utility.

2. Click the Actions menu and select Open Session.

3. Click the Open Session button. If the call succeeds, the NIFB process
is running and responding to requests, and a new session descriptor is
created under the Open Descriptors icon.

Chapter 4 NI-FBUS CM Software

© National Instruments Corporation 4-17 NI-FBUS Hardware and Software User Manual

4. Right-click the session descriptor icon and select WaitTrend.

5. The dialog box that opens waits until the NI-FBUS Communications
Manager receives a trend from any device on the bus. The trend data is
displayed in the Results box when the trend is received. The Trend
dialog continues to wait for and display trends as they are received
until you close it with the Cancel button.

You can wait on trends from all types of descriptors, not just session
descriptors. For example, if you wait on a trend from a device
descriptor, the dialog box only displays trends coming from the device
that the specified descriptor represents. The same is true of link, virtual
field device, and block descriptors.

To exit the NI-FBUS Dialog utility, select Exit from the File menu.

Configuring the Link Active Schedule File
If you want to do scheduling and use publishers and subscribers, you must
follow the instructions in this section. You may ignore this section if there
is no schedule, if the schedule is downloaded over the network to
your Fieldbus interface, or if you are using software such as the NI-FBUS
Configurator.

Introduction to the Link Active Schedule File
You must download the Link Active Schedule file to your Fieldbus
interface before the board can have Link Active Scheduler functionality
on the Fieldbus network.

Save the Link Active Schedule file as an .ini file. You can download this
file to your interface board using the NI-FBUS Dialog utility.

For detailed information about the parameters in the Link Active Schedule
file, refer to the Data Link Layer section of the Final Specification version
of the FOUNDATIONTM Fieldbus Specification document.

Chapter 4 NI-FBUS CM Software

NI-FBUS Hardware and Software User Manual 4-18 ni.com

Format of the Link Active Schedule File
Create your Link Active Schedule file with the following format. The
names of the sections of the Link Active Schedule file are:

[Schedule Summary]

...

[Subschedule 1]

...

[Sequence 1-1]

...

[Sequence 1-n]

...

[Subschedule x]

...

[Sequence x-1]

...

[Sequence x-y]

...

The general line format for all other lines is:

VARIABLE=VALUE

where the valid variable names and values are defined in Tables 4-1 to 4-4.

Table 4-1. Valid Variable Names and Values for the Schedule Summary Section

Variable Name Valid Values
Implied

Units Default

encodingVersionNumber 0–7 none none

versionNumber 0x0–0xffff none none

builderIdentifier 0x100–0xfff none none

numSubSchedules 0–255 none none

maxSchedulingOverhead 0x0–0x3f octets none

macroCycle 0x0–

0xffffffff

1/32 ms none

Chapter 4 NI-FBUS CM Software

© National Instruments Corporation 4-19 NI-FBUS Hardware and Software User Manual

For the variables in Table 4-4, N is an integer between 1 and numElement.
Repeat these variables within this subschedule section exactly
numElement times.

Table 4-2. Valid Variable Names and Values for the Subschedule Section

Variable Name Valid Values
Implied

Units Default

period 0x0–0xffffffff 1/32 ms none

numSequence 0–255 none none

Table 4-3. Valid Variable Names and Values for the Sequence Section

Variable Name Valid Values
Implied

Units Default

maxDuration 0x0–0xffff 1/32 ms none

numElement 0–255 none none

Table 4-4. Valid Variable Names Including the Variable N and
Values for the Sequence Section

Variable Name Valid Values
Implied

Units Default

priorityN TIMEAVAILABLE

URGENT

NORMAL

none none

addressN Parameter name in
TAG.PARAM format
or DLCEP (Data Link
Connection End Point)
in 0xNNNN format

none none

© National Instruments Corporation 5-1 NI-FBUS Hardware and Software User Manual

5
Developing The Application

This chapter explains how to develop your Fieldbus applications using the
NI-FBUS APIs and Libraries.

LabVIEW
NI-FBUS functions and controls are available in the LabVIEW palettes.
Before you use NI-FBUS VIs to develop your LabVIEW application, you
can use the NI-FBUS Configurator or the Tag Editor to view links, devices,
blocks, and parameters of the FF network. You can also create custom tag
names for these parameters which could help you develop your own
LabVIEW programs.

Refer to NI-FBUS VI Help for more information about these VIs.

Visual C++
The NI-FBUS software supports Microsoft Visual C/C++ version 6 or
later.

The header file and library for Visual C/C++ are in the MS Visual C folder
of the NI-FBUS folder. The typical path to this folder is \Program Files\
National Instruments\NI-FBUS\MS Visual C.

To use the NI-FBUS API, include the nifbus.h header file in the code,
and set the folder MS Visual C\includes as include path, then link with
the nifb.lib library file.

Note The NI-FBUS C API supports only the NI-FBUS Communication Manager on the
local computer.

The reference for each NI-FBUS API function is in Chapter 6, NI-FBUS
Function Reference. You can also refer to Chapter 4, NI-FBUS CM
Software.

Chapter 5 Developing The Application

NI-FBUS Hardware and Software User Manual 5-2 ni.com

You can find examples for the C language in the MS VIsual C\examples
subfolder of the NI-FBUS folder. There are four sample programs:
nifbtest.c, nifb_mt.c, nifbdd.c, and nifb_list.c. These files
provide you with some examples of the NI-FBUS Communications
Manager API usage. A description of each example is in comments at the
top of the .c file.

Visual Basic
The NI-FBUS software support Microsoft Visual Basic 6.0 version.

To create an application in Visual Basic, add the Declares.bas to your
project. The Declares.bas defines standard API calls to NI-FBUS
Communications Manager.

The Declares.bas are located in the MS Visual Basic folder of the
NI-FBUS folder. The typical path to this folder is \Program Files\
National Instruments\NI-FBUS\MS Visual Basic.

The reference for each NI-FBUS API function is in Chapter 6, NI-FBUS
Function Reference. You can also refer to Chapter 4, NI-FBUS CM
Software.

You can find example for Visual Basic in the example subfolder of
MS Visual Basic folder. The nifbusVBInterface.vbp file is the
Visual Basic project of the example.

.NET Class Libraries
This section provides general information about the .NET class libraries
included with NI-FBUS Software, you can use the .NET class libraries to
develop complete FOUNDATION™ Fieldbus applications in Visual Basic
.NET and Visual C#.

NI-FBUS Software includes the following .NET class libraries:

• Alert

• Block

• Device

• FBDate

• FBObject

• FBTime

Chapter 5 Developing The Application

© National Instruments Corporation 5-3 NI-FBUS Hardware and Software User Manual

• HseDevice

• Link

• Mib

• Session

• TimeOfDay

• Trend

• Vfd

For detailed information of the class libraries, please refer to the Help of
NI-FBUS Software .NET Library.

The Visual Basic .NET example can be found in the examples/
VBExample subfolder of the MS .NET folder. The VBExample.vbproj
file is the Visual Basic .NET project of the example.

The Visual C# example can be found in the examples/CsharpExample
subfolder of the MS .NET folder. The CsharpExample.csproj file is the
Visual C# project of the example.

Another .NET example can be found in examples/AdvDemo subfolder of
the MS .NET folder. The AdvDemo.csproj file is the Visual C# project of
the example.

OPC Server
NI-FBUS software includes a separate OPC Data Access Server, which is
compliant with the OPC Data Access 2.0 and 3.0 Specification.

Any OPC client program can easily access NI-FBUS OPC Server through
standard OPC DA interfaces. The FF data types are mapped to OPC data
types as below.

OPC Data Type Mapping Rule
The SIMPLE type and ARRAY type variables are regarded as leaf nodes
in the OPC address space. The RECORD type variables are regarded as
branch nodes, you need to access each of its member variable through this
branch node.

Chapter 5 Developing The Application

NI-FBUS Hardware and Software User Manual 5-4 ni.com

Table 5-1 shows the data type-mapping rule.

Table 5-1. OPC Data Type Mapping Rule

Meta Type
FMS Standard

Data Types OPC Data Type

Simple Boolean VT_BOOL

Integer8 VT_I1

Integer16 VT_I2

Integer32 VT_I4

Unsigned8 VT_UI1

Unsigned16 VT_UI2

Unsigned32 VT_UI4

Floating Point VT_R4

Visible String VT_BSTR

Octet String VT_ARRAY | VT_UI1

Date VT_DATE

Time of Day VT_DATE

Time Difference VT_DATE

Bit String VT_ARRAY | VT_UI1

Time Value VT_DATE

Array Boolean VT_ARRAY | VT_BOOL

Integer8 VT_ARRAY | VT_I1

Integer16 VT_ARRAY | VT_I2

Integer32 VT_ARRAY | VT_I4

Unsigned8 VT_ARRAY | VT_UI1

Unsigned16 VT_ARRAY | VT_UI2

Unsigned32 VT_ARRAY | VT_UI4

Floating Point VT_ARRAY | VT_R4

Visible String VT_ARRAY | VT_BSTR

Chapter 5 Developing The Application

© National Instruments Corporation 5-5 NI-FBUS Hardware and Software User Manual

The NI-FBUS OPC Server has passed OPC Foundation Compliance Test,
for more information, please visit OPC Foundation web site
www.opcfoundation.org.

Array (continued) Octet String —

Date VT_ARRAY | VT_DATE

Time of Day VT_ARRAY | VT_DATE

Time Difference VT_ARRAY | VT_DATE

Bit String —

Time Value VT_ARRAY | VT_DATE

Table 5-1. OPC Data Type Mapping Rule (Continued)

Meta Type
FMS Standard

Data Types OPC Data Type

© National Instruments Corporation 6-1 NI-FBUS Hardware and Software User Manual

6
NI-FBUS Function Reference

This chapter provides function reference for the NI-FBUS Communications Manager
software. You must have a general knowledge of the Fieldbus architecture to write programs
for the NI-FBUS Communications Manager, and you must understand how your code will
work with your Microsoft operating system.

Administrative Functions
For details on how NI-FBUS functions are classified and how to use them, refer to Chapter 4,
NI-FBUS CM Software.

List of Administrative Functions
Table 6-1. List of Administrative Functions

Function Purpose

nifClose Closes an open descriptor.

nifDownloadDomain Downloads data to the virtual field device (VFD) domain.

nifGetBlockList Returns a list of information for all blocks of the type specified in the VFD.

nifGetDeviceList Returns the list of information for all active devices on the network.

nifGetInterfaceList Reads the list of interface names from the NI-FBUS Communications
Manager.

nifGetVFDList Gathers VFD information on a specified physical device.

nifOpenBlock Returns a descriptor representing a block.

nifOpenLink Returns a descriptor representing a Fieldbus link.

nifOpenPhysicalDevice Returns a descriptor representing a physical device.

nifOpenSession Returns a descriptor for an NI-FBUS session.

nifOpenVfd Returns a descriptor representing a VFD.

nifShutdownCM Closes NI-FBUS Communications Manager.

nifStartupCM Starts NI-FBUS Communications Manager.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-2 ni.com

nifClose

Purpose
Closes an open descriptor.

Format
nifError_t nifClose(

nifDesc_t ud);

Input
ud The descriptor from an nifOpen call.

Output
Not applicable.

Context
Block, VFD, physical device, link, session.

Description
nifClose closes the specified descriptor. The descriptor is invalid after it is closed. Ensure
that your application closes all of the descriptors it opens. Your application should always
close a descriptor if it no longer needs the descriptor.

If you close a descriptor with calls pending on it, the calls complete within the usual time,
but an error code is returned indicating that you closed the descriptor prematurely. If
you make more synchronous wait calls that wait on the closing descriptor, such as
nifWaitTrend, nifWaitAlert, nifWaitAlert2, and nifGetDeviceList, the
NI-FBUS Communications Manager aborts these functions and returns an error code
indicating that you closed the descriptor. Since calls that wait on a closed descriptor return an
error message, you should have a separate descriptor for these synchronous wait calls.

Note A session is a connection between your application and an NI-FBUS entity. If you
close a session, you close the communication channel between your application and the
NI-FBUS entity associated with the session. Ensure that you close all descriptors opened
under this session before closing a session descriptor.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-3 NI-FBUS Hardware and Software User Manual

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The descriptor is invalid.
E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-4 ni.com

nifDownloadDomain

Purpose
Downloads data to the virtual field device (VFD) domain.

Format
nifError_t nifDownloadDomain(

nifDesc_t ud,

uint32 index,

char *fileName);

Input
ud The descriptor of the VFD you are accessing with index.
index The absolute VFD index value of the domain you specified to

download the data.
fileName The name of the file where the download data is stored.

Context
VFD, physical device, link, session.

Description
nifDownloadDomain is used to download the data or parameter values to the specified
VFD domain. The domain is specified by index.

To determine the appropriate index value, consult the documentation of the device to which
you are trying to download the domain. If the device supports the Domain Download feature,
the index for download should be specified in the documentation.

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The descriptor specified is not valid.
E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communication
Manager, under which the descriptor was opened, has been lost or
closed.

E_RESOURCE The NI-FBUS Communications Manager is unable to allocate a
system resource. This is usually a memory problem.

E_DEVICE_CHANGED The device you specified has changed.
E_VFD_CHANGED The VFD you specified has changed.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-5 NI-FBUS Hardware and Software User Manual

nifGetBlockList

Purpose
Returns a list of information for all blocks of the specified type present in the VFD.

Format
nifError_t nifGetBlockList(

nifDesc_t ud,

uint8 whichTypes,

nifBlockInfo_t *info,

uint16 *numBlocks)

Input
ud The descriptor of a VFD.
whichTypes Specifies what types of blocks to return (function, transducer,

or physical).
numBlocks The number of buffers allocated in the info list.

Output
info The list of information associated with each block.
numBlocks The number of blocks actually in the VFD.

Context
VFD.

Description
nifGetBlockList returns information about all the blocks in the specified VFD. A block
can be a resource block, transducer block, or function block residing within a VFD. Only
blocks of the types specified by whichTypes are returned.

To determine how many list items are to be returned, call the function twice. The first time
you call the function, set the numBlocks parameter to 0. The function will return an error
stating that there were not enough buffers configured, and it will return a new number for
numBlocks. Use this new numBlocks parameter to allocate memory for the data. When you
call the function the second time, use this new parameter. By doing so you will allocate only
as much memory as necessary.

nifBlockInfo_t is defined as follows:

typedef struct {

char fbTag[TAG_SIZE + 1];

uint16 startIndex;

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-6 ni.com

uint32 ddName;

uint32 ddItem;

uint16 ddRev;

uint16 profile;

uint16 profileRev;

uint32 executionTime;

uint32 periodExecution;

uint16 numParams;

uint16 nextFb;

uint16 startViewIndex;

uint8 numView3;

uint8 numView4;

uint16 ordNum;

uint8 blockType;

} nifBlockInfo_t;

The blockType field in nifBlockInfo_t can be FUNCTION_BLOCK,
TRANSDUCER_BLOCK, or RESOURCE_BLOCK.

The whichTypes parameter must be a bit combination of FUNCTION_BLOCK,
TRANSDUCER_BLOCK, and RESOURCE_BLOCK.

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The descriptor was invalid or of the wrong type.
E_COMM_ERROR The NI-FBUS Communications Manager failed to communicate

with the device.
E_BUF_TOO_SMALL The buffer does not contain enough entries to hold all the

information for the blocks. If you receive this error, buffer entries
that you allocated do not contain valid block information when the
call returns.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before
nifGetBlockList completed.

E_BAD_ARGUMENT The whichtypes value is something other than
FUNCTION_BLOCK, TRANSDUCER_BLOCK,
or RESOURCE_BLOCK.

E_RESOURCES A system resource problem occurred. The resource problem is
usually a memory shortage.

E_BAD_DEVICE_DATA The device returned some inconsistent information.
E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-7 NI-FBUS Hardware and Software User Manual

nifGetDeviceList

Purpose
Returns the list of information for all active devices on the network.

Format
nifError_t nifGetDeviceList(nifDesc_t link,

nifDeviceInfo_t *devInfo,

uint16 *numDevices,

uint16 *revision)

Input
link The link descriptor for which to return information.
numDevices The number of allocated list entries.
revision The revision number from the last nifGetDeviceList call,

or zero (refer to the Description section for usage).

Output
devInfo The list of device information.
numDevices The number of devices present in the link.
revision Current revision number of the live list that the NI-FBUS

Communications Manager reads from the Fieldbus interface to
the specified link.

Context
Link.

Description
nifGetDeviceList returns a list of information describing each device on the link. A link
is a group of Fieldbus devices connected across a single wire pair with no intervening bridges.
Before nifGetDeviceList returns the list of information, it waits until the revision
argument passed in differs from the live list revision number the Fieldbus interface keeps for
the specified link. The revision numbers the Fieldbus interface keeps start at one, so if you
pass in a zero for revision, you can force nifGetDeviceList to immediately return the
current device list. To use nifGetDeviceList most effectively, you should pass in the
revision parameter output from the previous call to nifGetDeviceList in subsequent
calls to it. Using the revision parameter output from the previous call forces
nifGetDeviceList to wait until the device list has actually changed before returning the
list of information.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-8 ni.com

If a device on the bus is unresponsive, its entry in the device information list has the tag
and device ID unknown device, but its address field is correct. Also, the flag bit
NIF_DEV_NO_RESPONSE is set.

The device list includes devices in the fixed, temporary, and visitor address ranges.

If there are too few input buffers, nifGetDeviceList returns an error code, but the
numDevices parameter is set to the total number of devices available. In this case, the buffers
you pass in do not contain valid data, but the revision number is set to the correct value.
If a device is an interface device, then the flag bit NIF_DEV_INTERFACE is set. You can
abort a pending nifGetDeviceList call by closing the link descriptor on which the call
was made.

To determine how many list items are to be returned in the call, call the function twice.
The first time you call the function, set the numDevices parameter to 0. The function will
return an error stating that there were not enough buffers configured, and it will return a new
number for numDevices. Use this new numDevices parameter to allocate memory for the
data. When you call the function the second time use this new parameter. By doing so you
will allocate only as much memory as necessary.

nifHseDeviceInfo_t is defined as follows.

typedef struct {

uint32 IpAddress;

uint16 deviceIndex;

uint16 maxDeviceIndex;

uint32 hseRepeatTime;

uint8 state;

uint8 type;

uint8 deviceRedundancyState;

uint8 duplicateDetectionState;

uint16 lanRedundancyPort;

uint16 reserved;

uint32 annunciationVersionNumber;

uint32 hseDeviceVersionNumber;

uint32 numH1Ports;

uint32 *h1VersionList;

} nifHseDeviceInfo_t;

nifDeviceInfo_t is defined as follows.

typedef struct {

char deviceID[DEV_ID_SIZE + 1];

char pdTag[TAG_SIZE + 1];

uint8 nodeAddress;

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-9 NI-FBUS Hardware and Software User Manual

uint32 flags;

nifHseDeviceInfo_t* hseDeviceInfo;

} nifDeviceInfo_t;

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The link descriptor is invalid.
E_BUF_TOO_SMALL There are not enough buffers allocated. If you receive this error,

your input buffers do not contain valid data.
E_COMM_ERROR The NI-FBUS Communications Manager failed to communicate

with the device.
E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifGetDeviceList completed.
E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-10 ni.com

nifGetInterfaceList

Purpose
Reads the list of interface names from the NI-FBUS Communications Manager configuration.

Format
nifError_t nifGetInterfaceList(

nifDesc_t ud,

int16 *numIntf,

nifInterfaceInfo_t *info)

Input
ud A valid session descriptor.
numIntf The number of buffers for interface information reserved in info.

Output
numIntf The actual number of names returned.
info An array of structures containing the interface name and device ID

for each interface.

Context
Not applicable.

Description
nifGetInterfaceList returns the interface name and device ID of each Fieldbus interface.
The numIntf parameter is an IN/OUT parameter. On input, it must contain the number of
buffers that info allocates and points to, and on output it contains the total number of interface
information entries available. If enough buffers were not allocated, or if the info buffer is
NULL, the NI-FBUS Communications Manager returns an error and does not copy any data
to the buffers. In this case, the numIntf parameter is still valid.

To determine how many list items are to be returned in the call, call the function twice. The
first time you call the function, set the numIntf parameter to 0. The function will return an
error stating that there were not enough buffers configured, and it will return a new number
for numIntf. Use this new numIntf parameter to allocate memory for the data. When you
call the function the second time, use this new parameter. By doing so, you will allocate only
as much memory as necessary.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-11 NI-FBUS Hardware and Software User Manual

The nifInterfaceInfo_t structure is defined as follows:

typedef struct nifInterfaceInfo_t{

char interfaceName[NIF_NAME_LEN];

char deviceID[DEV_ID_SIZE +1];

} nifInterfaceInfo_t;

Note nifGetInterfaceList is an internal function for the NI-FBUS Communications
Manager and does not cause Fieldbus activity.

Return Values
E_OK The call was successful.
E_BUF_TOO_SMALL The buffer does not contain enough entries to hold all the interface

information.
E_CONFIG_ERROR Some configuration information, such as registry information or

network configuration information, is incorrect.
E_NOT_FOUND Some interfaces are missing in the bus.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-12 ni.com

nifGetVFDList

Purpose
Gathers VFD information on a specified physical device.

Format
nifError_t nifGetVFDList(

nifDesc_t ud,

nifVFDInfo_t *info,

uint16 *numBuffers)

Input
ud The descriptor of the physical device for which to get the VFD list.
numBuffers The number of buffers allocated in the info list.

Output
numBuffers The number of VFDs actually in the device.
info The VFD information.

Context
Physical device.

Description
nifGetVFDList gathers function block application VFD information from the specified
physical device.

If there are too few input buffers, or if the input buffer pointer is NULL, an error code is
returned, but the numBuffers parameter is set to the total number of VFDs in the device.
In this case, no buffers contain valid data on output.

To determine how many list items are to be returned in the call, call the function twice.
The first time you call the function, set the numBuffers parameter to 0. The function will
return an error stating that there were not enough buffers configured, and it will return a new
number for numBuffers. Use this new numBuffers parameter to allocate memory for the
data. When you call the function the second time, use this new parameter. By doing so, you
will allocate only as much memory as necessary.

The info parameter has the following format:

typedef struct {

char vfdTag[TAG_SIZE +1];

char vendor[TAG_SIZE +1];

char model[TAG_SIZE +1];

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-13 NI-FBUS Hardware and Software User Manual

char revision[TAG_SIZE +1];

int16 ODVersion;

uint16 numTransducerBlocks;

uint16 numFunctionBlocks;

uint16 numActionObjects;

uint16 numLinkObjects;

uint16 numAlertObjects;

uint16 numTrendObjects;

uint16 numDomainObjects;

uint16 totalObjects;

uint32 flags;

} nifVFDInfo_t;

Return Values
E_OK The call was successful.
E_COMM_ERROR The NI-FBUS Communications Manager failed to communicate

with the device.
E_INVALID_DESCRIPTOR

The input descriptor does not correspond to a physical device.
E_BUF_TOO_SMALL There were not enough allocated buffers. Your specified input

buffers do not contain valid data.
E_SM_NOT_OPERATIONAL

The device is present, but cannot respond because it is at a default
address.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before
nifGetVFDList completed.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

E_BAD_DEVICE_DATA The device returned some inconsistent information.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-14 ni.com

nifOpenBlock

Purpose
Returns a descriptor representing a block.

Format
nifError_t nifOpenBlock (

nifDesc_t ud,

char *blockTag,

nifDesc_t *out_ud)

nifError_t nifOpenBlock (

nifDesc_t ud,

NIFB_ORDINAL(n),

nifDesc_t *out_ud)

Input
ud A valid session, link, physical device, or VFD descriptor.
blockTag The tag of the block. To access a block by ordinal number within

a VFD, use the NIFB_ORDINAL macro in the nifbus.h header
file. You can only access a block by ordinal number for VFD
descriptors.

Output
out_ud A descriptor for the block you request.

Context
VFD, physical device, link, session.

Description
nifOpenBlock returns a descriptor for the block you specify. You must pass a valid session,
link, physical device, or VFD descriptor to this function.

There are two ways to specify the block: by tag and by ordinal number. To open the
block by its tag, you must set blockTag to the current tag of the block. The NI-FBUS
Communications Manager returns an error if it finds more than one block with the
same tag. You can obtain the list of block tags within a specified VFD with a call to
nifGetBlockList.

To open the block by its ordinal number, use the NIFB_ORDINAL macro. This macro is valid
only if ud is a VFD descriptor. The first block in a VFD has the ordinal number zero. Notice
that the first block in a VFD is always the resource block.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-15 NI-FBUS Hardware and Software User Manual

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The input descriptor is invalid.
E_MULTIPLE There are identical block tags.
E_ORDINAL_NUM_OUT_OF_RANGE

The ordinal number is out of the device range.
E_COMM_ERROR An error occurred when the NI-FBUS Communications Manager

communicated with the device.
E_NOT_FOUND There is no such block in the device or VFD with the specified tag.
E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifOpenBlock completed.
E_RESOURCES A system resource problem occurred. The resource problem is

usually a memory shortage.
E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

E_BAD_DEVICE_DATA The device returned some inconsistent information.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-16 ni.com

nifOpenLink

Purpose
Returns a descriptor representing a Fieldbus link.

Format
nifError_t nifOpenLink (

nifDesc_t session,

uint8 interfaceOrDevID,

char *name,

uint16 linkID,

nifDesc_t *out_ud)

Input
session A valid session descriptor on which to open the link.
interfaceOrDevID How to specify the link: zero if by interface name, one if by local

device ID.
name The interface name or local device ID.
linkID The link ID.

Output
out_ud A descriptor for the link you request.

Context
Session.

Description
nifOpenLink returns a descriptor for the link you specify. You must pass a valid session
descriptor to this function.

There are two ways you can specify the link. If the interfaceOrDevID parameter is zero,
then name specifies the name of the interface the link is connected to. The list of valid
interface names is contained in a configuration source which the NI-FBUS Communications
Manager has access to, and can be obtained by a call to nifGetInterfaceList.
If interfaceOrDevID is one, then the name specifies the device ID of an interface device
to which the NI-FBUS Communications Manager is attached.

In both cases, linkID is the Fieldbus link ID number for the specified link. For single-link
Fieldbus networks, you can set linkID to zero.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-17 NI-FBUS Hardware and Software User Manual

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The input descriptor is invalid.
E_CONFIG_ERROR Some configuration information, such as registry information or

network configuration information, is incorrect.
E_NOT_FOUND The interface name, device ID, or link ID you specified is not

found.
E_RESOURCES A system resource problem occurred. The resource problem is

usually a memory shortage.
E_BAD_ARGUMENT The interfaceOrDevID value is not valid.
E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifOpenLink completed.
E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-18 ni.com

nifOpenPhysicalDevice

Purpose
Returns a descriptor representing a physical device.

Format
nifError_t nifOpenPhysicalDevice (

nifDesc_t ud,

uint8 tagOrDevID,

char *name,

nifDesc_t *out_ud)

Input
ud A valid session or link descriptor on which to open the device.
tagOrDevID How to specify the device: zero if by physical device tag, one if by

device ID.
name The tag or device ID.

Output
out_ud A descriptor for the device you request

Context
Link, session.

Description
nifOpenPhysicalDevice returns a descriptor for the physical device you specify. You
must pass a valid session or link descriptor to this function. If you pass a link descriptor,
the NI-FBUS Communications Manager searches only that link for the specified device.

There are two ways you can specify the device. If the tagOrDevID parameter is zero, then
the name specifies the tag of the physical device. If tagOrDevID is one, then name is the
device ID of the device you specify. You can obtain the list of physical device tags and device
IDs of devices on the network with a call to nifGetDeviceList.

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The input descriptor is invalid.
E_BAD_ARGUMENT The tagOrDevID value is not valid.
E_NOT_FOUND No attached physical device has the specified device ID or

physical device tag.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-19 NI-FBUS Hardware and Software User Manual

E_MULTIPLE There is more than one device with the same tag or device ID on
the same Fieldbus network.

E_COMM_ERROR An error occurred when the NI-FBUS Communications Manager
communicated with the device.

E_RESOURCES A system resource problem occurred. The resource problem is
usually a memory shortage.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before
nifOpenPhysicalDevice completed.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-20 ni.com

nifOpenSession

Purpose
Returns a descriptor for an NI-FBUS Communications Manager session.

Format
nifError_t nifOpenSession (

void *reserved,

nifDesc_t *out_ud)

Input
reserved Reserved for future use. You must set this value to NULL.

Output
out_ud A descriptor for the NI-FBUS Communications Manager

communications entity you request.

Context
Not applicable.

Description
nifOpenSession returns a descriptor for the NI-FBUS Communications Manager session.
When you open a session, the NI-FBUS Communications Manager establishes a
communication channel between your application and the NI-FBUS entity. All subsequent
descriptors you open are associated with this session, and all the NI-FBUS calls on these
descriptors communicate with the NI-FBUS entity through the communication channel
established during the nifOpenSession call.

The reserved argument is reserved for future use. You must set reserved to NULL.

Return Values
E_OK The call was successful.
E_SERVER_NOT_RESPONDING

Either the NI-FBUS Communications Manager server has not
been started or the server, in its current state, cannot respond to the
request.

E_RESOURCES A system resource problem occurred. The resource problem is
usually a memory shortage or a failure of file access functions.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-21 NI-FBUS Hardware and Software User Manual

nifOpenVfd

Purpose
Returns a descriptor representing a Virtual Field Device (VFD).

Format
nifError_t nifOpenVfd (

nifDesc_t ud,

char *vfdTag,

nifDesc_t *out_ud)

nifError_t nifOpenVfd (

nifDesc_t ud,

NIFB_ORDINAL(n),

nifDesc_t *out_ud)

Input
ud A valid physical device descriptor.
vfdTag The tag of the VFD. To access by ordinal number within a

physical device, use the ORDINAL macro in the nifbus.h
header file.

Output
out_ud A descriptor for the VFD you request.

Context
Physical device.

Description
nifOpenVfd returns a descriptor for the VFD you specify. More than one VFD can reside
within a physical device. You must pass a valid physical device descriptor to this function.

There are two ways to specify the VFD: by tag and by ordinal number. To open the VFD by
its tag, you must set the vfdTag parameter to the current tag of the VFD. The NI-FBUS
Communications Manager returns an error if it finds more than one VFD with the same tag.
You can obtain the list of VFD tags within a specified physical device with a call to
nifGetVFDList.

To open the VFD by its ordinal number, use the NIFB_ORDINAL macro. The first VFD of your
application in a physical device has the ordinal number zero. Notice that the Management
VFDs are not included in the ordinal numbering scheme.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-22 ni.com

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The input descriptor is invalid.
E_MULTIPLE There are identical VFD tags.
E_ORDINAL_NUM_OUT_OF_RANGE

The ordinal number is out of the device range.
E_COMM_ERROR An error occurred when the NI-FBUS Communications Manager

communicated with the device.
E_NOT_FOUND No VFD in the device has the specified VFD tag.
E_RESOURCES A system resource problem occurred. The resource problem is

usually a memory shortage.
E_SM_NOT_OPERATIONAL

The device is present, but cannot respond because it is at a default
address.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before
nifOpenVfd completed.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

E_BAD_DEVICE_DATA The device returned some inconsistent information.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-23 NI-FBUS Hardware and Software User Manual

nifShutdownCM

Purpose
Closes the NI-FBUS Communications Manager.

Format
nifError_t nifShutdownCM (

uint32 interval);

Input
interval The maximum waiting time in milliseconds for closing the

NI-FBUS Communications Manager process. If interval is set
to 0, the default timeout value of 2000 milliseconds is used.
If interval is set to NIFB_TIMEOUT_INFINITE, the function
will return only when the NI-FBUS Communications Manager
has been cleanly closed. If the interval time is exceeded, the
NI-FBUS Communications Manager process will be forcefully
closed.

Output
None.

Context
Not applicable.

Description
nifShutdownCM closes the NI-FBUS Communications Manager. The return value indicates
whether the NI-FBUS Communications Manager has been forcibly closed. If the
NI-FBUS Communications Manager cannot be closed normally within the interval time,
it will be closed forcefully. The normal close can ensure all the system resources are cleaned
up. The forceful close can’t ensure that.

Return Values
E_OK The NI-FBUS Communications Manager has been closed

normally. The call was successful.
E_SHUTDOWN_FORCE The NI-FBUS Communications Manager has been forcefully

closed.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-24 ni.com

nifStartupCM

Purpose
Starts the NI-FBUS Communications Manager.

Format
nifError_t nifStartupCM (

uint32 windowStyle,
uint32 interval);

Input
windowStyle Specifies the style of how the NI-FBUS Communications

Manager main window is displayed. This parameter may be one
of the following:

NIFB_WND_STYLE_NORMAL Activate and display the main window of
the NI-FBUS Communications Manager.

NIFB_WND_STYLE_MINIMIZE Minimize the main window of the
NI-FBUS Communications Manager.

interval The maximum waiting time in milliseconds for the NI-FBUS
Communications Manager to complete the initialization. If
interval is set to 0, this function will immediately return after
the NI-FBUS Communications Manager process is created. If
interval is set to NIFB_TIMEOUT_INFINITE, the function will
return only when the NI-FBUS Communications Manager has
completed initialization or an error has occurred. The total time of
completing initialization depends on the number and the type of
the FBUS interface cards.

Output
None.

Context
Not applicable.

Description
nifStartupCM launches the NI-FBUS Communications Manager. Depending on the
windowStyle parameter, The NI-FBUS Communications Manager will be launched in
normal style or minimized style.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-25 NI-FBUS Hardware and Software User Manual

Note nifStartupCM reads the NI-FBUS installation information from the registry to
find the path of the NI-FBUS Communications Manager. If the specific NI-FBUS system
registry information cannot be found or is corrupt, this function will return an error code.

Return Values
E_OK The NI-FBUS Communications Manager has launched

successfully.
E_FILE_NOT_FOUND The NI-FBUS Communications Manager binary cannot be found

or is corrupt.
E_REGKEY_NOT_FOUND The NI-FBUS system registry information cannot be found or is

corrupt.
E_TIMEOUT The NI-FBUS Communications Manager has started but the

initialization procedure has not completed within the timeout
period.

E_SERVER_CONNECTION_LOST

The NI-FBUS Communications Manager has encountered an
error during initialization.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-26 ni.com

Core Fieldbus Functions
You can use the NI-FBUS core functions to access Fieldbus block parameters using any type
of descriptor. Because there are several ways to identify the Fieldbus block parameters, the
NI-FBUS core functions accept special interface macros for the name argument, as well as
the standard TAG.PARAM identifier format. Refer to the Using Interface Macros section for
tips on using the interface macros.

List of Core Functions

Table 6-2. List of Core Functions

Function Purpose

nifFreeObjectAttributes Frees an nifAttributes_t structure allocated during a
previous call to nifGetObjectAttributes.

nifFreeObjectType Frees an nifObjTypeLinst_t structure allocated during a
previous call to nifGetObjectType.

nifGetObjectAttributes Reads a single set of object attributes from the Device
Description (DD).

nifGetObjectName Returns the Object Dictionary symbol name of the specified
object.

nifGetObjectSize Returns the size in bytes of an object’s value.

nifGetObjectType Returns the Object Dictionary type of the specified object.

nifReadObject Reads an object’s value from a device.

nifReadObjectList Reads the values of several objects from a device or several
devices.

nifWriteObject Writes a parameter value to a device.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-27 NI-FBUS Hardware and Software User Manual

nifFreeObjectAttributes

Purpose
Frees an nifAttributes_t structure allocated during a previous call to
nifGetObjectAttributes.

Format
nifError_t nifFreeObjectAttributes(

nifAttributes_t *attr)

Input
attr Object attribute values your application reads using

nifGetObjectAttributes.

Output
Not applicable.

Context
Session, block, VFD, physical device, link.

Description
nifFreeObjectAttributes frees up the memory associated with the nifAttributes_t
structure specified by attr. attr must have been filled in by a successful call to
nifGetObjectAttributes. Once this function has been called, the contents of attr
are no longer valid.

If your application does not call this function after calling nifGetObjectAttributes,
your application will not free up memory properly.

Return Values
E_OK The call was successful.
E_BAD_ARGUMENT attr was not a valid nifAttributes_t structure.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-28 ni.com

nifFreeObjectType

Purpose
Frees the nifObjTypeList_t structure allocated during a previous call to
nifGetObjectType.

Format
nifError_t nifFreeObjectType(

nifObjTypeList_t *typeData)

Input
typeData Object Type values to be freed. These values were previously read

with the nifGetObjectType function call.

Output
Not applicable.

Context
Session, block, VFD, physical device, link.

Description
nifFreeObjectType frees up the memory associated with the nifObjTypeList_t
structure specified by typeData. typeData must have been filled in by a successful call to
nifGetObjectType. Once this function has been called, the contents of typeData are no
longer valid.

If your application does not call this function after calling nifGetObjectType, your
application will not free up memory properly.

Refer to nifGetObjectType to get more details about the nifObjTypeList_t structure.

Return Values
E_OK The call was successful.
E_BAD_ARGUMENT typeData was not a valid nifObjTypeList_t structure.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-29 NI-FBUS Hardware and Software User Manual

nifGetObjectAttributes

Purpose
Reads a single set of object attributes from the Device Description (DD).

Format
nifError_t nifGetObjectAttributes(

nifDesc_t ud,

char *name,

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_INDEX(uint32 idx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint32 idx, uint32 subidx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,

NIFB_ITEM(uint32 item),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint32 subidx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_BLOCK_ITEM(char *blocktag, uint32 item),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag, uint32

item,

uint32 subidx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint32 idx),

nifAttributes_t *attr)

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-30 ni.com

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint32

idx,

uint32 subidx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint32 subidx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char

*name,

uint32 subidx), nifAttributes_t *attr)

Input
ud The descriptor (of any type if by name; VFD or block if by index).
name Name of the object you need the device description attributes of,

in BLOCKTAG.PARAM form. To specify a structure element by
name, specify the name in BLOCKTAG.STRUCT.ELEMENT format.
Refer to Table 6-5 for an explanation of how to use macros to
specify the object.

Output
attr Object attribute values read from the DDOD (Device Description

Object Dictionary). The type nifAttributes_t consists of a
data structure including a type code which selects from a list of
structures, one for each type of object. Other information,
including whether individual attributes were successfully
evaluated and whether individual attributes are dynamic (meaning
they could change) also is provided. The structure is too long to be
included in this chapter. You can find it in the NI-FBUS
Communications Manager header files.

Context
Session, block, VFD, physical device, link.

Description
The NI-FBUS Communications Manager reads the device description object attributes
identified in the call from the DDOD associated with ud and returned in attr. Notice that the
object attributes describe certain characteristics of the object, but do not contain the object
value. The device description object attributes also differ in content from the FMS Object
Description of the object.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-31 NI-FBUS Hardware and Software User Manual

For block, VFD, physical device, or link descriptors, the object name may refer to a variable
or a variable list. You normally would use nifGetObjectAttributes to read the type
description of a certain data type.

Refer to Table 6-5 for an explanation of how to use macros to specify the object.

For more detailed information concerning the nifAttributes_t structure, refer to
Chapter 3, Using ddi_get_item, of the Fieldbus Foundation Device Description Services
User Guide.

Note After a successful call to nifGetObjectAttributes, your application must call
nifFreeObjectAttributes when it is done using the attr structure. Your application
will not free up memory correctly if it does not perform this operation.

Return Values
E_OK The call was successful.
E_CONFIG_ERROR Some configuration information, such as registry information or

network configuration information, is incorrect.
E_INVALID_DESCRIPTOR

The device descriptor does not correspond to a VFD or block.
E_SYMBOL_FILE_NOT_FOUND

The NI-FBUS Communications Manager could not find the
symbol file.

E_SM_NOT_OPERATIONAL

The device is present, but cannot respond because it is at a default
address.

E_NOT_FOUND The referred object does not exist, or it does not have object
attributes.

E_MULTIPLE The NI-FBUS Communications Manager found more than
one identical tag; the function failed.

E_ORDINAL_NUM_OUT_OF_RANGE

The ordinal number is out of the device range.
E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifGetObjectAttributes completed.
E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-32 ni.com

nifGetObjectName

Purpose
Returns the Object Dictionary symbol name of the specified object.

Format
nifError_t nifGetObjectName(

nifDesc_t ud,

char *inName,

char *outName)

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_INDEX(uint32 idx),

char *outName)

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint32 idx, uint32 subidx),

char *outName)

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_ITEM(uint32 item),

char *outName)

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint32 subidx),

char *outName)

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint32 idx),

char *outName)

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint32

idx, uint32 subidx),

char *outName)

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint32 subidx),

char *outName)

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-33 NI-FBUS Hardware and Software User Manual

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX (char *blocktag, char

*name, uint32 subidx),

char *outName)

Input
ud The descriptor of the session, link, physical device, VFD or block

if you are accessing by name. If you are accessing by index,
ud must be a VFD or block.

inName The name of the parameter you want to read the OD symbol name
in BLOCKTAG.PARAM form. Refer to Table 6-5 for an explanation
of how to use macros to specify the parameter. To specify a named
structure element, supply name in BLOCKTAG.STRUCT.ELEMENT
format.

Output
outName The Object symbol name read from the Object Dictionary in

the device.

Context
Session, block, VFD, DDOD, physical device, link.

Description
nifGetObjectName is used to read the Object Dictionary symbol names of objects such as
block, VFD, MIB objects, or communication objects from devices.

• If ud is the descriptor of a link, then inName must be in BLOCKTAG.PARAM_NAME
format.

• If ud is a session descriptor, then all links are searched for the given
BLOCKTAG.PARAM_NAME. The call fails if identical BLOCKTAG.PARAM_NAME tags are
found on the bus. Index access is not allowed for session descriptors.

• If ud is the descriptor of a general function block application VFD, and you use the
NIFB_INDEX macro, the index specified is the index of the object in the VFD.

• If ud is the descriptor of a function block, name must be in PARAM_NAME format.

• If ud is the descriptor of a function block, and you use the NIFB_INDEX or
NIFB_INDEX_SUBINDEX macro, the index specified is the relative index of the
parameter within the block. Relative indices start at one for the first parameter. Index zero
retrieves the object dictionary symbol name of the block itself.

• In all cases, you can expand PARAM_NAME to STRUCT.ELEMENT format to represent a
named element of a named structure.

Refer to Table 6-5 for an explanation of how to use macros to specify the parameter.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-34 ni.com

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The descriptor you specified is not valid.
E_NOT_FOUND The NI-FBUS Communication Manager could not find the

specified object.
E_SYMBOL_FILE_NOT_FOUND

The NI-FBUS Communication Manager could not find the
symbol file.

E_BAD_ARGUMENT The object specified by index was that of a simple data type,
which must already be known to you.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communication
Manager, under which the descriptor was opened, has been lost or
closed.

E_DEVICE_CHANGED The device you specified is changed.
E_VFD_CHANGED The VFD you specified is changed.
E_COMM_ERROR An error occurred when the NI-FBUS Communication Manager

tried to communicate with the device.
E_RESOURCE The NI-FBUS Communications Manager is unable to allocate

some system resource; this is usually a memory problem.
E_OBSOLETE_BLOCK The block you specified is no longer valid.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-35 NI-FBUS Hardware and Software User Manual

nifGetObjectSize

Purpose
Returns the size (in bytes) of an object’s value.

Format
nifError_t nifGetObjectSize(

nifDesc_t ud,

char *name,

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_INDEX(uint32 idx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint32 idx, uint32 subidx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_ITEM(uint32 item),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint32 subidx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_BLOCK_ITEM(char *blocktag, uint32 item),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag, uint32

item,

uint32 subidx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint32 idx),

int16 *size_in_bytes)

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-36 ni.com

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint32

idx, uint32 subidx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint32 subidx),

int16 *size_in_bytes)

nifError_t ni1fGetObjectSize(

nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char

*name, uint32 subidx),

int16 *size_in_bytes)

Input
ud The descriptor of a block.
name Character string name of the object you need the size of, in

BLOCKTAG.PARAM form. To specify a structure element by name,
specify the name in BLOCKTAG.STRUCT.ELEMENT format. Refer
to Table 6-5 for an explanation of how to use macros to specify
the character string name.

Output
size_in_bytes The size of the object.

Context
Session, block, VFD, physical device, link.

Description
This function returns the size of the specified Object Value. You have to pass a buffer of the
returned size to nifReadObject to hold the value of the object.

Refer to Table 6-5 for an explanation of how to use macros to specify the character
string name.

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The specified descriptor is invalid.
E_SYMBOL_FILE_NOT_FOUND

The NI-FBUS Communications Manager could not find the
symbol file.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-37 NI-FBUS Hardware and Software User Manual

E_NOT_FOUND The named object does not exist.
E_MULTIPLE Multiple identical tags were found; the function failed.
E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifGetObjectSize completed.
E_ORDINAL_NUM_OUT_OF_RANGE

The ordinal number is out of the device range.
E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-38 ni.com

nifGetObjectType

Purpose
Returns the Object Dictionary type of the specified object.

Format
nifError_t nifGetObjectType(

nifDesc_t ud,

char *objName,

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_INDEX(uint32 idx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint32 idx, uint32 subidx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_ITEM(uint32 item),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint32 subidx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_BLOCK_ITEM(char *blocktag, uint32 item),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag, uint32

item, uint32 subidx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint32 idx),

nifObjTypeList_t *typeData)

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-39 NI-FBUS Hardware and Software User Manual

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint32

idx, uint32 subidx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint32 subidx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char

*name, uint32 subidx),

nifObjTypeList_t *typeData)

Input
ud The descriptor of the session, link, physical device, VFD, or block

if you are accessing by name. If you are accessing by index,
ud must be a VFD or block.

objName The name of the parameter you want to read the OD type of, in
BLOCKTAG.PARAM form. Refer to Table 6-5 for an explanation of
how to use macros to specify the parameter. To specify a named
structure element, supply name in BLOCKTAG.STRUCT.ELEMENT
format. To specify a type index returned by a previous call to
nifGetObjectType, use the NIFB_TYPE_INDEX macro.

Output
typeData Object Type value read from the object dictionary in the device.

The nifObjTypeList_t data structure is a record consisting of
an object type code, the number of elements, the blocktag to
which this object belongs (if applicable), and a pointer to a list of
elements of type nifObjElem_t. The nifObjElem_t type is a
structure which consists of two elements: the OD typeIndex of
the element and the OD length of the element.

Context
Session, block, VFD, DDOD, physical device, link.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-40 ni.com

Description
nifGetObjectType is used to read the Object Dictionary type values of objects such as
block parameters, MIB objects, or communication parameters from devices.

• If ud is the descriptor of a link, then objName must be in BLOCKTAG.PARAM_NAME
format.

• If ud is a session descriptor, then all links are searched for the given
BLOCKTAG.PARAM_NAME. The call fails if identical BLOCKTAG.PARAM_NAME tags are
found on the bus. Index access is not allowed for session descriptors.

• If ud is the descriptor of a general function block application VFD, and you use the
NIFB_INDEX macro, the index specified is the index of the object in the VFD.

• If ud is the descriptor of a function block, name must be in PARAM_NAME format.

• If ud is the descriptor of a function block, and you use the NIFB_INDEX or
NIFB_INDEX_SUBINDEX macro, the index specified is the relative index of the
parameter within the block. Relative indices start at one for the first parameter.
Index zero retrieves the OD type of the block itself.

• In all cases, you can expand PARAM_NAME to STRUCT.ELEMENT format to represent a
named element of a named structure.

Refer to Table 6-5 for an explanation of how to use macros to specify the parameter.

The nifObjTypeList_t data structure is defined as follows:

typedef struct {

uint8 objectCode;

uint16 numElems;

char blockTag[TAG_SIZE + 1];

nifObjElem_t *allElems;

} nifObjTypeList_t;

The nifObjElem_t data type is defined as follows:

typedef struct {

uint16 objTypeIndex;

uint16 objSize;

} nifObjElem_t;

The objectCode returned in the data structure nifObjTypeList_t is as specified in the
FMS Specifications section of the Fieldbus Foundation Specifications document and is listed
in Table 6-3, for your convenience.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-41 NI-FBUS Hardware and Software User Manual

For object codes ODT_STRUCTTYPE, ODT_SIMPLEVAR, ODT_ARRAY, and ODT_RECORD, the
list of elements in allElements contains the typeIndex and the size of each component
element. For example, the following fragment of pseudocode gets the type information for a
structured object and does something with the type information for each element:

nifObjTypeList_t typeInfo;

nifDesc_t aiBlock;

int loop;

...

nifGetObjectType(aiBlock, "OUT", &typeInfo);

for (loop=0; loop < typeInfo.numElems; loop++)

{

doSomethingWithElement(typeInfo.allElems[loop]);

}

For variable list objects (type ODT_VARLIST), you must call nifGetObjectType for each
element in the list of elements with the typeIndex of the element returned in the list with
the first nifGetObjectType call. The typeIndex of the element returned in the list in this
case is the relative index of the element within the block, whose name is returned by
blockTag. These subsequent calls to nifGetObjectType should use the NIFB_INDEX
macro to specify the typeIndex returned by the first call.

Table 6-3. Object Codes for the nifObjTypeList_t Data Structure

Object Object Code in fbtypes.h

Domain ODT_DOMAIN

Program Invocation ODT_PI

Event ODT_EVENT

Data Type ODT_SIMPLETYPE

Data Type Structure Description ODT_STRUCTTYPE

Simple Variable ODT_SIMPLEVAR

Array ODT_ARRAY

Record ODT_RECORD

Variable List ODT_VARLIST

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-42 ni.com

For example, the following fragment of pseudocode gets the type information for a variable
list object and does something with the type information for each variable:

nifObjTypeList_t typeInfo, varTypeInfo;

nifDesc_t aiBlock;

int loop;

...

nifGetObjectType(aiBlock, "VIEW_1", &typeInfo);

if (typeinfo.objectCode == ODT_VARLIST)

{

for (loop=0; loop < typeInfo.numElems; loop++)

{

nifGetObjectType(aiBlock,

NIFB_INDEX(typeInfo.allElems[loop].objTypeIndex),

&varTypeInfo);

doSomethingWithVariable(varTypeInfo);

}

}

For all successful calls to nifGetObjectType, you must call nifFreeObjectType to
clean up memory allocated within these structures.

For objects with the object codes ODT_DOMAIN, ODT_PI, ODT_EVENT, and
ODT_SIMPLETYPE, only the object type is returned, and the list of elements allElems in the
structure nifObjTypeList_t is empty. The list of standard data types for an object which
has the object code ODT_SIMPLETYPE also is as specified in the FMS Specifications section
of the Fieldbus Foundation Specifications document.

Table 6-4. Object Codes for the nifObjTypeList_t Data Structure

Data Type
objTypeIndex
in fbtypes.h Number of Octets (Size)

Boolean FF_BOOLEAN 1

Integer8 FF_INTEGER8 1

Integer16 FF_INTEGER16 2

Integer32 FF_INTEGER32 4

Unsigned8 FF_UNSIGNED8 1

Unsigned16 FF_UNSIGNED16 2

Unsigned32 FF_UNSIGNED32 4

Floating Point FF_FLOAT 4

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-43 NI-FBUS Hardware and Software User Manual

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The descriptor you specified is not valid.
E_TIMEOUT The device containing the object is present but did not respond

within the timeout period.
E_MULTIPLE More than one identical tag was found. The function failed.
E_NOT_FOUND The NI-FBUS Communications Manager could not find the

specified object.
E_BAD_ARGUMENT The object specified by index was that of a simple data type,

which must already be known to you.
E_RESOURCES The NI-FBUS Communications Manager is unable to allocate

some system resource. This is usually a memory problem.
E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager, under which the descriptor was opened, has been lost or
closed.

Visible String FF_VISIBLE_STRING 1, 2, 3, ...

Octet String FF_OCTET_STRING 1, 2, 3, ...

Date FF_DATE 7

Time of Day FF_TIMEOFDAY 4 or 6

Time Difference FF_TIME_DIFF 4 or 6

Bit String FF_BIT_STRING 1, 2, 3, ...

Time Value FF_TIME_VALUE 8

Table 6-4. Object Codes for the nifObjTypeList_t Data Structure (Continued)

Data Type
objTypeIndex
in fbtypes.h Number of Octets (Size)

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-44 ni.com

nifReadObject

Purpose
Reads an object’s value from a device.

Format
nifError_t nifReadObject(

nifDesc_t ud,

char *name,

void *buffer,

uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_INDEX(uint32 idx),

void *buffer, uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint32 idx, uint32 subidx),

void *buffer, uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_ITEM(uint32 item),

void *buffer,

uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint32 subidx),

void *buffer,

uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_BLOCK_ITEM(char *blocktag, uint32 item),

void *buffer, uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag, uint32

item, uint32 subidx),

void *buffer,

uint8 *length)

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-45 NI-FBUS Hardware and Software User Manual

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint32 idx),

void *buffer,

uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint32

idx,

uint32 subidx),

void *buffer,

uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint32 subidx),

void *buffer,

uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char

*name, uint32 subidx),

void *buffer,

uint8 *length)

Input
ud The descriptor of the session, link, physical device, VFD or block

if reading by name. If reading by index, ud must be a VFD
or block.

name Name of the parameter your application reads, in
BLOCKTAG.PARAM format. To specify a structure element by
name, specify the name in BLOCKTAG.STRUCT.ELEMENT format.
Refer to Table 6-5 for an explanation of how to use macros to
specify the parameter.

length The size of the buffer to hold the result, in bytes.

Output
buffer The value that the NI-FBUS Communications Manager reads.
length The actual size of the resulting data, in bytes.

Context
Session, block, VFD, physical device, link.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-46 ni.com

Description
nifReadObject reads the values of objects such as block parameters or communications
parameters from devices.

• If ud is the descriptor of a link, then name must be in the format
BLOCKTAG.PARAM_NAME.

• If ud is a session descriptor, then all links are searched for the given
BLOCKTAG.PARAM_NAME. The call fails if multiple identical BLOCKTAG.PARAM_NAME
tags are located on the bus. Index access is not allowed for session descriptors.

• If ud is the descriptor of a general function block application VFD, then name must be
in the format BLOCKTAG.PARAM_NAME.

• If ud is the descriptor of a function block, name must be in the format PARAM_NAME.

• If ud is the descriptor of a function block, and the NIFB_INDEX or
NIFB_INDEX_SUBINDEX macro is used, the index specified is the relative index of the
parameter within the block. Relative indices start at 1 for the first parameter.

• In all descriptor cases, you can expand PARAM_NAME itself to STRUCT.ELEMENT format
to represent a named element of a named structure.

In each case, name can represent either a variable or a variable list object. You should
determine the size of the object beforehand, possibly with a call to nifGetObjectSize.
If the object is larger than the buffer size specified in length, the NI-FBUS Communications
Manager returns an error, and none of the data in the buffer is valid.

Refer to Table 6-5 for an explanation of how to use macros to specify the parameter.

The data nifReadObject returns is in Fieldbus Foundation FMS Application format. You
must accomplish conversion of the data to the internal format of your processor and compiler.

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The descriptor does not correspond to a VFD or function block.
This descriptor is no longer valid.

E_NOT_FOUND The referred object does not exist.
E_OBJECT_ACCESS_DENIED

The NI-FBUS Communications Manager interface does not have
the required privileges. The access group you belong to is not
allowed to acknowledge the event, or the password you used is
wrong.

E_MULTIPLE The NI-FBUS Communications Manager found more than
one identical tag. The function failed.

E_BUF_TOO_SMALL The object is larger than your buffer.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-47 NI-FBUS Hardware and Software User Manual

E_SM_NOT_OPERATIONAL

The device is present, but cannot respond because it is at a default
address.

E_SYMBOL_FILE_NOT_FOUND

The NI-FBUS Communications Manager could not find the
symbol file.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before
nifReadObject completed.

E_COMM_ERROR The NI-FBUS Communications Manager failed to communicate
with the device.

E_PARAMETER_CHECK The device reported a violation of parameter-specific checks.
E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-48 ni.com

nifReadObjectList

Purpose
Reads the values of several objects from a device or several devices.

Format
nifError_t nifReadObjectList (

nifDesc_t ud,

char **blkParamList,

uint16 numObjects,

void *buffer,

uint16 *length,

nifError_t *errArray)

Input
ud The descriptor of the session, link, physical device, VFD,

or block.
blkParamList The list of parameter names your application reads in the form

of BLOCKTAG.PARAM. To specify any parameter by index use
the NIFB_INDEX macro. To specify any parameter that is an
array or structure element by index and subindex, use the
NIFB_INDEX_SUBINDEX macro. To specify a named structure
element, supply the parameter name in the form of
BLOCKTAG.STRUCT.ELEMENT.

numObjects The number of parameter names specified in blkParamList.
(The maximum number of objects that can be specified in
blkParamList is given by the constant MAX_LIST_ELEMS.)

length The size of the buffer to hold the result of all the parameter reads,
in bytes.

Output
buffer The values of all the parameters read, stored as a continuous string

of bytes.
length The cumulative size of the actual resulting data in bytes.
errArray The error codes resulting from each parameter read. The error

codes have a one-to-one correspondence with the order in which
the parameters are specified in blkParamList.

Context
Session, link, device, VFD, block.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-49 NI-FBUS Hardware and Software User Manual

Description
nifReadObjectList reads the values of objects specified in the list, which may include
block parameters or communication parameters from devices.

• If ud is the descriptor of a link, each name in blkParamList must be in the format
BLOCKTAG.PARAM_NAME.

• If ud is a session descriptor, then all links are searched for any given name specified by
the blocktag.param format in blkParamList. The read of this particular object fails
if identical BLOCKTAG.PARAM_NAME tags are located on the bus. Index access is not
allowed for session descriptors.

• If ud is the descriptor of a general function block application VFD, any name in
blkParamList must be in the format blocktag.param_name.

• If ud is the descriptor of a function block, any name in blkParamList must be in the
format PARAM_NAME.

• If ud is the descriptor of a function block and the NIFB_INDEX or
NIFB_INDEX_SUBINDEX macro is used to specify a name in blkParamList, the index
specified is the relative index of the parameter within the block. Relative indices start at 1
for the first block parameter.

• In all descriptor cases, any PARAM_NAME specified in blkParamList can be expanded
to STRUCT.ELEMENT format to represent a named element of a named structure.

For each name specified in blkParamList, the name can either represent a variable or a
variable list object. You should determine the size of each object specified in blkParamList
beforehand, possibly with a call to nifGetObjectSize. If the cumulative size of all the
objects specified in the list is larger than the buffer size specified in length, the NI-FBUS
Communications Manager returns an error. The data in the buffer is valid for however many
objects were successfully read. The success or failure of the read for every object specified
in blkParamList is indicated in errArray, the array in which error codes are returned.
The error code in the first element of errArray is the error code indicating success or failure
upon read of the first object specified in blkParamList, and so on.

Refer to Table 6-5 for an explanation of how to use macros to specify the parameters in
blkParamList.

The data nifReadObjectList returns is in Fieldbus Foundation FMS Application format.
You must accomplish conversion of the data to the internal format of your processor and
compiler.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-50 ni.com

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The descriptor is no longer valid.
E_BUF_TOO_SMALL The size of the data resulting from the read of all objects specified

in the list is larger than your buffer.
E_RESOURCES A system resource problem occurred. The resource problem is

usually a memory shortage.
E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-51 NI-FBUS Hardware and Software User Manual

nifWriteObject

Purpose
Writes a parameter value to a device.

Format
nifError_t nifWriteObject(

nifDesc_t ud,

char *name,

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_INDEX(uint32 idx),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint32 idx, uint32 subidx),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_ITEM(uint32 item),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint32 subidx),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_BLOCK_ITEM(char *blocktag, uint32 item),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag, uint32

item, uint32 subidx),

void *buffer,

uint8 length)

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-52 ni.com

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint32 idx),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint32

idx,

uint32 subidx),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint32 subidx),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char

*name, uint32 subidx),

void *buffer,

uint8 length)

Input
ud The descriptor of the session, link, physical device, VFD, or

block, if writing by name. If writing by index, ud must be a VFD
or block.

name Name of the parameter you want the NI-FBUS Communications
Manager to write, in BLOCKTAG.PARAM form. To specify a
structure element by name, specify the name in
BLOCKTAG.STRUCT.ELEMENT format. Refer to Table 6-5 for an
explanation of how to use macros to specify the parameter.

buffer The value you want the NI-FBUS Communications Manager
to write.

length The size of the data buffer, in bytes.

Output
Not applicable.

Context
Block, VFD, physical device, link, session.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-53 NI-FBUS Hardware and Software User Manual

Description
nifWriteObject writes the values of a function block parameter to a device.

• If ud is the descriptor of a session or link, then name must be in the format
BLOCKTAG.PARAM_NAME.

• If ud is a session descriptor, then all links are searched for the given
BLOCKTAG.PARAM_NAME. The function fails if more than one identical
BLOCKTAG.PARAM_NAME match is found.

• If ud is a physical device descriptor, a parameter is written by BLOCKTAG.PARAM_NAME.

• If ud is the descriptor of a general Virtual Field Device, then name must be in the format
BLOCKTAG.PARAM_NAME.

• If ud is the descriptor of a function block, name must be in the format PARAM_NAME.

• If ud is the descriptor of a function block, and you use the NIFB_INDEX or
NIFB_INDEX_SUBINDEX macro, the index specified is the relative index of the
parameter within the block. Relative indices start at one for the first parameter.

• In all descriptor cases, you can expand PARAM_NAME itself to STRUCT.ELEMENT format
to represent a named element of a named structure.

Refer to Table 6-5 for an explanation of how to use macros to specify the parameter.

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The device descriptor does not correspond to a VFD.
E_SYMBOL_FILE_NOT_FOUND

The NI-FBUS Communications Manager could not find the
symbol file.

E_ORDINAL_NUM_OUT_OF_RANGE

The parameter is out of the device range.
E_OBJECT_ACCESS_UNSUPPORTED

The device does not support write access to this object.
E_MULTIPLE The NI-FBUS Communications Manager found more than

one identical tag. The function failed.
E_SM_NOT_OPERATIONAL

The device is present, but cannot respond because it is at a default
address.

E_COMM_ERROR The NI-FBUS Communications Manager failed to communicate
with the device.

E_PARAMETER_CHECK The device reported a violation of parameter-specific checks.
E_EXCEED_LIMIT The device reported that the value exceeds the limit.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-54 ni.com

E_WRONG_MODE_FOR_REQUEST

The device reported that the current function block mode does not
allow you to write to the parameter.

E_WRITE_IS_PROHIBITED

The device reported that the WRITE_LOCK parameter value is set.
The WRITE_LOCK parameter prohibits writing to the name
parameter.

E_DATA_NEVER_WRITABLE

The specified object is read-only.
E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-55 NI-FBUS Hardware and Software User Manual

Using Interface Macros
This section contains tips for using the NI-FBUS Communications Manager interface macros.
These macros are defined in the header file nifbus.h.

As shown in Table 6-5, you can specify the parameter your application reads in the name
parameter in the following ways:

• To specify an object by index, use the NIFB_INDEX macro in the nifbus.h header file.

• To specify an array or structure element by index and subindex, use the
NIFB_INDEX_SUBINDEX macro.

• If you already have a block descriptor, you can specify an object by its item ID with
the NIFB_ITEM macro, or you can specify a subelement by its item ID with the
NIFB_ITEM_SUBINDEX macro.

Table 6-5. Core Function Macros

Descriptor Type
You Have

Parameter Information
You Have Macro to Use

Block Descriptor Name Normal Access by Name

Name and Subindex NIFB_NAME_SUBINDEX

Relative Index within
the Block

NIFB_INDEX

Relative Index and Subindex NIFB_INDEX_SUBINDEX

Device Description Item ID NIFB_ITEM

Device Description Item ID
and Subindex

NIFB_ITEM_SUBINDEX

Non-Block Descriptor Name Normal Access Using
BLOCKTAG.PARAM Format

Name and Subindex NIFB_BLOCK_NAME_SUBINDEX

Relative Index within
the Block

NIFB_BLOCK_INDEX

Relative Index and Subindex NIFB_BLOCK_INDEX_SUBINDEX

Device Description Item ID NIFB_BLOCK_ITEM

Device Description Item ID
and Subindex

NIFB_BLOCK_ITEM_SUBINDEX

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-56 ni.com

• If you do not have a block descriptor, you have the following choices:

– You can use the NIFB_BLOCK_ITEM macro to specify an item.

– You can use the NIFB_BLOCK_ITEM_SUBINDEX macro to specify a subelement.

– You can use the NIFB_BLOCK_INDEX macro specify an object by index.

– You can use the NIFB_BLOCK_INDEX_SUBINDEX macro to specify a subindex.

You can find all these macros in the nifbus.h header file.

Alert and Trend Functions
The following tables list the alert and trend functions.

Table 6-6. Alert Functions

Function Purpose

nifAcknowledgeAlarm Acknowledges an alarm received

nifWaitAlert Waits for an alert (an event or an alarm) from a
specific device or from any device

nifWaitAlert2 Waits for an alert (an event or an alarm) from a
specific device or from any device. This function
supports Standard Diagnostic Alert.

Table 6-7. Trend Function

Function Purpose

nifWaitTrend Waits for a trend from a specific device or from
any device

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-57 NI-FBUS Hardware and Software User Manual

nifAcknowledgeAlarm

Purpose
Acknowledges an alarm received.

Format
nifError_t nifAcknowledgeAlarm(

nifDesc_t ud,

char *alarmName)

Input
ud A session, link, physical device, VFD, or block descriptor for

the alarm.
alarmName The name of the alarm object that you want the NI-FBUS

Communications Manager to acknowledge. If ud is a block
descriptor, alarmName should be the parameter name, otherwise
alarmName should be in BLOCKTAG.PARAMNAME format.

Context
Block, VFD, physical device, link, session.

Description
nifAcknowledgeAlarm acknowledges an alarm notification from a device. The NI-FBUS
Communications Manager clears the unacknowledged field associated with the alarm
object alarmName.

If ud is a block descriptor, the alarmName is the same as the alarmOrEventName field of
the alert data you get in the nifWaitAlert or nifWaitAlert2 call. If ud is a session, link,
VFD, or physical device descriptor, then alarmName is in BLOCKTAG.PARAMNAME format,
where blockTag is the same as the blockTag field of the alert data in the nifWaitAlert
or nifWaitAlert2 function.

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The device descriptor is not a valid descriptor.
E_OBJECT_ACCESS_DENIED

The NI-FBUS Communications Manager interface does not have
the required privileges. The access group you belong to is not
allowed to acknowledge the event, or the password you used
is wrong.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-58 ni.com

E_COMM_ERROR An error occurred when the NI-FBUS Communications Manager
tried to communicate with the device.

E_ALARM_ACKNOWLEDGED

The alarm has already been acknowledged.
E_MULTIPLE There are identical block tags.
E_NOT_FOUND There is no such block in the device or VFD with the specified tag.
E_SYMBOL_FILE_NOT_FOUND

The NI-FBUS Communications Manager could not find the
symbol file.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-59 NI-FBUS Hardware and Software User Manual

nifWaitAlert

Purpose
Waits for an alert (an event or an alarm) from a specific device or from any device.

Format
nifError_t nifWaitAlert(

nifDesc_t ud,

nifAlertData_t *aldata,

uint8 alertPriority)

Input
ud The descriptor of the session, link, physical device, VFD, block,

or link the alert comes from.
alertPriority Lowest priority of the alert coming in that you want to wait on.

Output
aldata The information about the specific alert.

Context
Block, VFD, physical device, link, session.

Description
nifWaitAlert only supports normal alert types and does not support Standard Diagnostics
Alert. It is recommended to use nifWaitAlert2 instead.

ud represents a descriptor of a session, link, a physical device, a VFD, or a block. If ud
is a VFD descriptor, then the NI-FBUS Communications Manager waits for an alert from
any block in the Virtual Field Device. If ud is a block, the NI-FBUS Communications
Manager waits for an alarm or event from the block ud refers to. If ud represents a link,
nifWaitAlert completes when an event is received from any device connected to that link.
If the descriptor is a session descriptor, the function waits on any event from any attached link.

nifWaitAlert waits indefinitely until the NI-FBUS Communications Manager receives an
alert with a priority greater than or equal to the input alert priority. Your application can have
a dedicated thread which does nifWaitAlert only.

When the NI-FBUS Communications Manager interface receives an alert, the aldata
parameter is filled in with the information about the aldata. The form of
aldata->alertData depends on the value of aldata->alertType.
aldata->alarmOrEventName is the name of the alarm parameter or event parameter that
caused the alert. aldata->deviceTag and aldata->blockTag are the tags of the device
and the block of the alarm, respectively.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-60 ni.com

nifWaitAlert sends a confirmation to the device, informing the alerting device that the alert
was received. Note that this is a separate step from alert acknowledgment, which must be
carried out for alarms using nifAcknowledgeAlarm.

If you have multiple threads waiting to receive the same alert, the NI-FBUS Communications
Manager sends a copy of the alert to all the waiting threads. Your application must ensure that
only one thread acknowledges any one alarm with a call to nifAcknowledgeAlarm. You can
abort a pending nifWaitAlert call by closing the descriptor on which the call was made.

The alertType parameter can be ALERT_ANALOG, ALERT_DISCRETE, or ALERT_UPDATE.

nifAlertData_t is defined as follows:

typedef struct nifAlertData_t{

uint8 alertType;

char deviceTag[TAG_SIZE + 1];

char blockTag[TAG_SIZE + 1];

char alarmOrEventName [TAG_SIZE + 1];

uint8 alertKey;

uint8 standardType;

uint8 mfrType;

uint8 messageType;

uint8 priority;

nifTime_t timeStamp;

uint16 subCode;

uint16 unitIndex;

union {

float floatAlarmData;

uint8 discreteAlarmData;

uint16 staticRevision;

} alertData;

} nifAlertData_t;

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The descriptor you gave is invalid.
E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifWaitAlert completed.
E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-61 NI-FBUS Hardware and Software User Manual

nifWaitAlert2

Purpose
Waits for an alert (an event or an alarm) from a specific device or from any device.
nifWaitAlert2 supports Standard Diagnostics Alert.

Format
nifError_t nifWaitAlert2(

nifDesc_t ud,

nifAlertData2_t *aldata,

uint8 alertPriority)

Input
ud The descriptor of the session, link, physical device, VFD, block,

or link the alert comes from.
alertPriority Lowest priority of the alert coming in that you want to wait on.

Output
aldata The information about the specific alert (supports Standard

Diagnostics Alert).

Context
Block, VFD, physical device, link, session.

Description
nifWaitAlert2 is compatible with all of the alert types of nifWaitAlert, and
nifWaitAlert2 is able to support Standard Diagnostics Alert. It is recommended that
you use nifWaitAlert2 instead of nifWaitAlert.

ud represents a descriptor of a session, link, a physical device, a VFD, or a block. If ud
is a VFD descriptor, then the NI-FBUS Communications Manager waits for an alert from
any block in the Virtual Field Device. If ud is a block, the NI-FBUS Communications
Manager waits for an alarm or event from the block ud refers to. If ud represents a link,
nifWaitAlert2 completes when an event is received from any device connected to that link.
If the descriptor is a session descriptor, the function waits on any event from any attached link.

nifWaitAlert2 waits indefinitely until the NI-FBUS Communications Manager receives an
alert with a priority greater than or equal to the input alert priority. Your application can have
a dedicated thread which does nifWaitAlert2 only.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-62 ni.com

When the NI-FBUS Communications Manager interface receives an alert, the
aldata parameter is filled in with the information about the aldata. The
form of aldata->alertData depends on the value of aldata->alertType.
aldata->alarmOrEventName is the name of the alarm parameter or event parameter that
caused the alert. aldata->deviceTag and aldata->blockTag are the tags of the device
and the block of the alarm, respectively.

nifWaitAlert2 sends a confirmation to the device, informing the alerting device that the
alert was received. Note that this is a separate step from alert acknowledgment, which must
be carried out for alarms using nifAcknowledgeAlarm.

If you have multiple threads waiting to receive the same alert, the NI-FBUS Communications
Manager sends a copy of the alert to all the waiting threads. Your application must ensure that
only one thread acknowledges any one alarm with a call to nifAcknowledgeAlarm. You can
abort a pending nifWaitAlert2 call by closing the descriptor on which the call was made.

The alertType parameter can be ALERT_ANALOG, ALERT_DISCRETE, ALERT_UPDATE, or
or ALERT_STANDARD_DIAGNOSTICS.

nifAlertData2_t is defined as follows:

typedef struct nifAlertData2_t{

uint8 alertType;

char deviceTag[TAG_SIZE + 1];

char blockTag[TAG_SIZE + 1];

char alarmOrEventName [TAG_SIZE + 1];

uint8 alertKey;

uint8 standardType;

uint8 mfrType;

uint8 messageType;

uint8 priority;

uint8 reserved[3];

nifTime_t timeStamp;

union {

nifAlertAnalogData_t analog;

nifAlertDiscreteData_t discrete;

nifAlertUpdateData_t update;

nifAlertStandardDiagnosticsData_t stdDiag;

} alertData;

} nifAlertData2_t;

typedef struct nifAlertAnalogData_t {

uint16 subCode;

float value;

uint32 relativeIndex;

uint16 unitIndex;

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-63 NI-FBUS Hardware and Software User Manual

} nifAlertAnalogData_t;

typedef struct nifAlertDiscreteData_t {

uint16 subCode;

uint8 value;

uint32 relativeIndex;

uint16 unitIndex;

} nifAlertDiscreteData_t;

typedef struct nifAlertUpdateData_t {

uint16 staticRevision;

uint32 relativeIndex;

} nifAlertUpdateData_t;

typedef struct nifAlertStandardDiagnosticsData_t {

uint32 subCode;

uint8 value;

uint32 relativeIndex;

uint16 sourceBlockIndex;

} nifAlertStandardDiagnosticsData_t;

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The descriptor you gave is invalid.
E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifWaitAlert2 completed.
E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

Chapter 6 NI-FBUS Function Reference

NI-FBUS Hardware and Software User Manual 6-64 ni.com

nifWaitTrend

Purpose
Waits for a trend from a specific device or from any device.

Format
nifError_t nifWaitTrend(

nifDesc_t ud,

nifTrendData_t *trend)

Input
ud The descriptor of the session, physical device, VFD, block,

or link that the trend comes from.

Output
trend The information about the specific trend.

Context
Block, VFD, physical device, link, session.

Description
ud represents a descriptor of a session, link, physical device, VFD, or block. If ud is a VFD
descriptor, then the NI-FBUS Communications Manager waits for a trend from any block in
the Virtual Field Device. If ud is a block, the NI-FBUS Communications Manager waits for
a trend from the block ud identifies. If ud represents a link, the call completes when a trend
is received from any device connected to that link. If the descriptor is a session descriptor,
nifWaitTrend waits on any trend from any attached link.

nifWaitTrend waits indefinitely until the NI-FBUS Communications Manager interface
receives a trend. Your application can have a dedicated thread which does nifWaitTrend
only.

When a trend comes in, the trend parameter is filled in with the information about the trend.
The form of trend->trendData depends on the value of trend->trendType. There are
three trend types: TREND_FLOAT, TREND_DISCRETE, and TREND_BITSTRING. If the trend
type is TREND_FLOAT, the trend->trendData is a 16-element array of floating point
numbers. If the trend type is TREND_DISCRETE, the trend->trendData is a 16-element
array of 1-byte integers. If the trend type is TREND_BITSTRING, the trend->trendData is
a 16-element array of 2-byte bit strings, which is equivalent to a 32-element array of 1-byte
integers. deviceTag and blockTag are the device and block tags of the parameter that has
the trend; paramName is the name of the parameter.

Chapter 6 NI-FBUS Function Reference

© National Instruments Corporation 6-65 NI-FBUS Hardware and Software User Manual

If you have multiple threads waiting to receive the same trend, the NI-FBUS Communications
Manager sends a copy of the trend to all the waiting threads. You can abort a pending
nifWaitTrend call by closing the descriptor on which the call was made.

The trend type can be TREND_FLOAT, TREND_DISCRETE, or TREND_BITSTRING.
The sample type can be SAMPLE_INSTANT or SAMPLE_AVERAGE.

nifTrendData_t is defined as follows:

typedef struct nifTrendData_t {

uint8 trendType;

char deviceTag[TAG_SIZE + 1];

char blockTag[TAG_SIZE + 1];

char paramName[TAG_SIZE + 1];

uint8 sampleType;

uint32 sampleInterval;

nifTime_t lastUpdate;

uint8 status[16];

union {

float f[16];

uint8 d[16];

uint8 bs[32];

} trendData;

} nifTrendData_t;

Return Values
E_OK The call was successful.
E_INVALID_DESCRIPTOR

The descriptor you gave is not valid.
E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications
Manager for this descriptor has been closed or lost.

© National Instruments Corporation A-1 NI-FBUS Hardware and Software User Manual

A
Specifications

This appendix lists the hardware specifications and interface cabling
information for the PCI-FBUS, PCMCIA-FBUS, USB-8486, and
FBUS-HSE/H1 linking device.

PCI-FBUS/2

Power Requirement
PCI-FBUS/2 ... 820 mA Typical

Physical
Dimensions... 10.67 × 17.46 cm

(4.2 × 6.88 in.)

I/O connector.. 9-pin male D-SUB
(1 per Fieldbus link)

Altitude... 2,000 m

Pollution Degree 2

Indoor use only.

Environment

Operating Environment
Ambient temperature.............................. 0 to 55 °C

Relative humidity 10 to 90%, noncondensing

Storage Environment
Ambient temperature.............................. –20 to 70 °C

Relative humidity 5 to 95%, noncondensing

Appendix A Specifications

NI-FBUS Hardware and Software User Manual A-2 ni.com

Safety
This product meets the requirements of the following standards of safety
for electrical equipment for measurement, control, and laboratory use:

• IEC 60950-1, EN 60950-1

• UL 60950-1, CSA 60950-1

Note For UL and other safety certifications, refer to the product label or the Online
Product Certification section.

Electromagnetic Compatibility
This product meets the requirements of the following EMC standards for
electrical equipment for measurement, control, and laboratory use:

• EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity

• EN 55011 (CISPR 11): Group 1, Class A emissions

• AS/NZS CISPR 11: Group 1, Class A emissions

• FCC 47 CFR Part 15B: Class A emissions

• ICES-001: Class A emissions

Note For EMC declarations and certifications, refer to the Online Product Certification
section.

Note For EMC compliance, operate this device with shielded cables and accessories.

CE Compliance
This product meets the essential requirements of applicable European
Directives as follows:

• 2006/95/EC; Low-Voltage Directive (safety)

• 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification
To obtain product certifications and the Declaration of Conformity (DoC)
for this product, visit ni.com/certification, search by model number
or product line, and click the appropriate link in the Certification column.

Appendix A Specifications

© National Instruments Corporation A-3 NI-FBUS Hardware and Software User Manual

Environmental Management
NI is committed to designing and manufacturing products in an
environmentally responsible manner. NI recognizes that eliminating certain
hazardous substances from our products is beneficial to the environment
and to NI customers.

For additional environmental information, refer to the NI and the
Environment Web page at ni.com/environment. This page contains the
environmental regulations and directives with which NI complies, as well
as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)
EU Customers At the end of the product life cycle, all products must be sent to a WEEE
recycling center. For more information about WEEE recycling centers, National
Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on
Waste and Electronic Equipment, visit ni.com/environment/weee.

RoHS
National Instruments (RoHS)

National Instruments RoHS ni.com/environment/rohs_china
(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Appendix A Specifications

NI-FBUS Hardware and Software User Manual A-4 ni.com

PCMCIA-FBUS

Note The PCMCIA-FBUS here stands for PCMCIA-FBUS Series 2 card, and the
PCMCIA-FBUS/2 below stands for PCMCIA-FBUS/2 Series 2 card.

Power Requirement
+5 VDC (±5%)

PCMCIA-FBUS......................................350 mA typical; active

PCMCIA-FBUS/2350 mA typical; active

Physical
Dimensions ...8.56 × 5.40 × 0.5 cm

(3.4 × 2.1 × 0.2 in.)

I/O connector ..PCMCIA-FBUS cable with 9-pin
male D-SUB and pluggable screw
terminal for each port

Altitude ...2,000 m

Pollution Degree2

Indoor use only.

Environment

Operating Environment
Ambient temperature0 to 55 °C

Relative humidity10 to 90%, noncondensing
(tested in accordance with
IEC-60068-2-1, IEC-60068-2-2,
EC-60068-2-56)

Storage Environment
Ambient temperature–20 to 70 °C

Relative humidity5 to 95%, noncondensing
(tested in accordance with
IEC-60068-2-1, IEC-60068-2-2,
EC-60068-2-56)

Appendix A Specifications

© National Instruments Corporation A-5 NI-FBUS Hardware and Software User Manual

Safety
This product meets the requirements of the following standards of safety
for electrical equipment for measurement, control, and laboratory use:

• IEC 60950-1, EN 60950-1

• UL 60950-1, CSA 60950-1

Note For UL and other safety certifications, refer to the product label or the Online
Product Certification section.

Electromagnetic Compatibility
This product meets the requirements of the following EMC standards for
electrical equipment for measurement, control, and laboratory use:

• EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity

• EN 55011 (CISPR 11): Group 1, Class A emissions

• AS/NZS CISPR 11: Group 1, Class A emissions

• FCC 47 CFR Part 15B: Class A emissions

• ICES-001: Class A emissions

Note For EMC declarations and certifications, refer to the Online Product Certification
section.

Note For EMC compliance, operate this device with shielded cables and accessories.

CE Compliance
This product meets the essential requirements of applicable European
Directives as follows:

• 2006/95/EC; Low-Voltage Directive (safety)

• 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification
To obtain product certifications and the Declaration of Conformity (DoC)
for this product, visit ni.com/certification, search by model number
or product line, and click the appropriate link in the Certification column.

Appendix A Specifications

NI-FBUS Hardware and Software User Manual A-6 ni.com

Environmental Management
NI is committed to designing and manufacturing products in an
environmentally responsible manner. NI recognizes that eliminating certain
hazardous substances from our products is beneficial to the environment
and to NI customers.

For additional environmental information, refer to the NI and the
Environment Web page at ni.com/environment. This page contains the
environmental regulations and directives with which NI complies, as well
as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)
EU Customers At the end of the product life cycle, all products must be sent to a WEEE
recycling center. For more information about WEEE recycling centers, National
Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on
Waste and Electronic Equipment, visit ni.com/environment/weee.

RoHS
National Instruments (RoHS)

National Instruments RoHS ni.com/environment/rohs_china
(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Appendix A Specifications

© National Instruments Corporation A-7 NI-FBUS Hardware and Software User Manual

USB-8486
This section lists specifications for the USB-8486 hardware.

Bus Interface
USB.. USB 2.0 High-Speed or

Full-Speed1

FOUNDATION™ Fieldbus Standard H1 interface2

Power Requirement
USB High-power Bus-powered Device

Working Mode Current 300 mA maximum
(full temperature range)
180 mA typical
(at 25°C)

Suspend Current 2.5 mA maximum
(full temperature range)

Physical

USB-8486 without Screw Retention and Mounting
Options
Dimensions... 7.87 × 6.35 × 2.54 cm

(3.1 × 2.5 × 1.0 in.)

Weight .. 165 g (5.82 oz)

Captive USB cable length 2 m

I/O connector

USB... Standard series A plug

FOUNDATION™ Fieldbus
H1 Interface 9-pin male D-SUB

Altitude... 2,000 m

1 Using the USB-8486 in full-speed mode reduces device performance.
2 Galvanically isolated.

Appendix A Specifications

NI-FBUS Hardware and Software User Manual A-8 ni.com

Pollution Degree2

Indoor use only.

USB-8486 with Screw Retention and Mounting
Options
Dimensions ...8.61 × 6.35 × 2.98 cm

(3.39 × 2.5 × 1.18 in.)

Weight ..175 g (6.17 oz)

Captive USB cable length.......................1 m

I/O connector

USB ...Standard series A plug with
retention thumbscrew

FOUNDATION™ Fieldbus
H1 Interface9-pin male D-SUB

Altitude ...2,000 m

Pollution Degree2
Indoor use only.

Environment

Operating Environment
Ambient temperature0 to 55 °C

Relative humidity10 to 90%, noncondensing
(tested in accordance with
IEC-60068-2-1, IEC-60068-2-2,
EC-60068-2-56)

Storage Environment
Ambient temperature–20 to 70 °C

Relative humidity5 to 95%, noncondensing
(tested in accordance with
IEC-60068-2-1, IEC-60068-2-2,
EC-60068-2-56)

Appendix A Specifications

© National Instruments Corporation A-9 NI-FBUS Hardware and Software User Manual

Safety
This product meets the requirements of the following standards of safety
for electrical equipment for measurement, control, and laboratory use:

• IEC 60950-1, EN 60950-1

• UL 60950-1, CSA 60950-1

Note For UL and other safety certifications, refer to the product label or the Online
Product Certification section.

Electromagnetic Compatibility
This product meets the requirements of the following EMC standards for
electrical equipment for measurement, control, and laboratory use:

• EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity

• EN 55011 (CISPR 11): Group 1, Class A emissions

• AS/NZS CISPR 11: Group 1, Class A emissions

• FCC 47 CFR Part 15B: Class A emissions

• ICES-001: Class A emissions

Note For EMC declarations and certifications, refer to the Online Product Certification
section.

Note For EMC compliance, operate this device with shielded cables and accessories.

CE Compliance
This product meets the essential requirements of applicable European
Directives as follows:

• 2006/95/EC; Low-Voltage Directive (safety)

• 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification
To obtain product certifications and the Declaration of Conformity (DoC)
for this product, visit ni.com/certification, search by model number
or product line, and click the appropriate link in the Certification column.

Appendix A Specifications

NI-FBUS Hardware and Software User Manual A-10 ni.com

Environmental Management
NI is committed to designing and manufacturing products in an
environmentally responsible manner. NI recognizes that eliminating certain
hazardous substances from our products is beneficial to the environment
and to NI customers.

For additional environmental information, refer to the NI and the
Environment Web page at ni.com/environment. This page contains the
environmental regulations and directives with which NI complies, as well
as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)
EU Customers At the end of the product life cycle, all products must be sent to a WEEE
recycling center. For more information about WEEE recycling centers, National
Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on
Waste and Electronic Equipment, visit ni.com/environment/weee.

FBUS-HSE/H1 Linking Device
FBUS-HSE/H1 LDHigh-Speed Ethernet,

FOUNDATION™ Fieldbus H1

Integrity ..Checksum

Maximum nodes/fieldbus
segment (without repeats).......................32

Power Requirement
Power supply range11 to 32 VDC

Power consumption8 W

RoHS
National Instruments (RoHS)

National Instruments RoHS ni.com/environment/rohs_china
(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Appendix A Specifications

© National Instruments Corporation A-11 NI-FBUS Hardware and Software User Manual

Physical
Dimensions... 10.7 × 10.9 × 9.1 cm

(4.3 × 4.3 × 3.6 in.)

I/O connector.. DB-9 D-SUB
(2 per Fieldbus link)

Ethernet .. RJ-45 10 BaseT and 100 BaseT

Altitude... 2,000 m

Pollution Degree 2

Indoor use only.

Environment

Operating Environment
Ambient temperature.............................. –20 to 55 °C

Relative humidity 10 to 90%, noncondensing

Storage Environment
Ambient temperature.............................. –55 to 85 °C

Relative humidity 5 to 95%, noncondensing

Safety
This product meets the requirements of the following standards of safety
for electrical equipment for measurement, control, and laboratory use:

• IEC 60950-1, EN 60950-1

• UL 60950-1, CSA 60950-1

Note For UL and other safety certifications, refer to the product label or the Online
Product Certification section.

Appendix A Specifications

NI-FBUS Hardware and Software User Manual A-12 ni.com

Electromagnetic Compatibility
This product meets the requirements of the following EMC standards for
electrical equipment for measurement, control, and laboratory use:

• EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity

• EN 55011 (CISPR 11): Group 1, Class A emissions

• AS/NZS CISPR 11: Group 1, Class A emissions

• FCC 47 CFR Part 15B: Class A emissions

• ICES-001: Class A emissions

Note For EMC declarations and certifications, refer to the Online Product Certification
section.

Note For EMC compliance, operate this device with shielded cables and accessories.

CE Compliance
This product meets the essential requirements of applicable European
Directives as follows:

• 2006/95/EC; Low-Voltage Directive (safety)

• 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification
To obtain product certifications and the Declaration of Conformity (DoC)
for this product, visit ni.com/certification, search by model number
or product line, and click the appropriate link in the Certification column.

Environmental Management
NI is committed to designing and manufacturing products in an
environmentally responsible manner. NI recognizes that eliminating certain
hazardous substances from our products is beneficial to the environment
and to NI customers.

For additional environmental information, refer to the NI and the
Environment Web page at ni.com/environment. This page contains the
environmental regulations and directives with which NI complies, as well
as other environmental information not included in this document.

Appendix A Specifications

© National Instruments Corporation A-13 NI-FBUS Hardware and Software User Manual

Waste Electrical and Electronic Equipment (WEEE)
EU Customers At the end of the product life cycle, all products must be sent to a WEEE
recycling center. For more information about WEEE recycling centers, National
Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on
Waste and Electronic Equipment, visit ni.com/environment/weee.

RoHS
National Instruments (RoHS)

National Instruments RoHS ni.com/environment/rohs_china
(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

© National Instruments Corporation B-1 NI-FBUS Hardware and Software User Manual

B
Troubleshooting and
Common Questions

This appendix describes how to troubleshoot common problems that occur
while getting started with Fieldbus hardware and software products.

Interface Board—USB, PCI, and PCMCIA

Error Messages
Utility could not access or locate the registry. Make sure you are logged
in to Windows with administrator privileges.

Your registry entries for NI-FBUS may have been deleted or corrupted.
Uninstall the NI-FBUS software, then reinstall the software.

Board cannot be found.

• Select Start»All Programs»National Instruments»NI-FBUS»
Utilities»Interface Configuration Utility. Ensure that your board
appears under the list of interfaces.

• Ensure the NIFB driver is started.

– Select Start»Settings»Control Panel»System»Hardware»
Device Manager. Select National Instruments FieldBus
Interfaces»USB-8486 or PCI-FBUS/2 or PCMCIA-FBUS,
right-click and select Properties. Ensure there are no conflicts.

When using a USB-8486, Nifb returns an error message stating that the
configured board does not exist.

Ensure that the USB-8486 has not been unplugged.

If you want to use the USB-8486 again, complete the following steps.

1. Connect the USB-8486 to an available USB port on the system.

2. Select Start»All Programs»National Instruments»NI-FBUS»
Utilities»Interface Configuration Utility.

3. Right-click the USB-8486 to enable it.

Appendix B Troubleshooting and Common Questions

NI-FBUS Hardware and Software User Manual B-2 ni.com

If you want to use other interfaces in the system without this USB-8486,
complete the following steps.

1. Select Start»All Programs»National Instruments»NI-FBUS»
Utilities»Interface Configuration Utility.

2. Right-click the USB-8486 to delete it.

VCR_FULL_ERROR.

Delete the board from the Interface Configuration Utility, then reinstall.

Interface Configuration Problems
When using the NI-FBUS Interface Configuration Utility, the error
message utility could not access or locate the registry
appears.

• Ensure that you are logged in to Windows with administrator
privileges.

• Your registry entries for NI-FBUS may have been deleted or corrupted.
Uninstall the NI-FBUS software, then reinstall the software.

In the Interface Configuration Utility, I see more boards than what
physically exist in the machine.

Select Edit for the extra board. In the next window, select Delete.

Caution You should not attempt to make unguided changes in the Windows registry.
Doing so can cause many problems with your system.

NIFB Problems
When a Fieldbus device is connected to the bus, the NIFB process often
hangs when the title bar reads Waiting for Startup Completion.
If I disconnect the cables, it starts fine.

This is probably due to a device address conflict. In the NI-FBUS Interface
Configuration Utility, ensure that the interface is not at the same address as
anything else on the link. You also can temporarily give the interface a
visitor address to troubleshoot this problem.

Appendix B Troubleshooting and Common Questions

© National Instruments Corporation B-3 NI-FBUS Hardware and Software User Manual

The NIFB process hangs, does not start up, or never shows that it is
running.

• The Fieldbus network address is not unique. Remove the cable from
the board. Restart the NIFB process. If it runs successfully, there is
probably a Fieldbus network address conflict. You can try to change
the board address. In the Interface Configuration Utility, select the port
and click Edit. Ensure that the port does not have an address that
conflicts with another device on the bus. You also can set the interface
to a visitor address. In this case, the board will find and take an unused
address. If this corrects the problem, find and change the address of
one of the conflicting devices. Return the board to a fixed address.

• Check for multiple copies of nifb.dll on the machine. If multiple
copies are found, NI-FBUS was incorrectly reinstalled. Uninstall
NI-FBUS, search for any remaining copies of nifb.dll, delete them,
then reinstall the software.

• Check to see how many boards are showing up in the Interface
Configuration Utility. Ensure that this matches the number of boards
in the system. Also check that the number of ports match the physical
hardware (one port versus two port boards).

• Link masters do not always work well together (if you have another
link master on the link). Try setting the board to be a basic device in
the Interface Configuration Utility.

If a board interface is configured as a basic device, another link master
device must be present on this link before the NI-FBUS process will
start up. For more about Basic and Link Master devices, refer to the
FOUNDATIONTM Fieldbus Overview document.

1. Select Start»All Programs»National Instruments»NI-FBUS»
Utilities»Interface Configuration Utility.

2. In the Interface Configuration window, select the icon of the board
you want to change and click the Edit button. If you are adding a
board, click the Add Interface Device button.

Problems Using Manufacturer-Defined Features
NI-FBUS uses identifying information in the actual device to locate the
device description for the device. The identifying information includes
four resource block parameters: MANUFAC_ID, DEV_TYPE, DEV_REV, and
DD_REV. If the identifying information is incorrect, NI-FBUS will not be
able to locate the device description for the device. When it has located the
device description, NI-FBUS matches the block types in the device
description with the actual blocks in the device by using the Item ID of the
block characteristics record.

Appendix B Troubleshooting and Common Questions

NI-FBUS Hardware and Software User Manual B-4 ni.com

If the blocks in the device do not match the blocks in the description, or if
there is no appropriate device description for the manufacturer, device type,
device revision, and device description revision being returned by the
device, then there is a device description mismatch. In either case,
NI-FBUS uses only the standard dictionary (nifb.dct) and you will be
unable to use any manufacturer-supplied functionality.

These parameters can be read from the device resource block. The
following procedure will help you troubleshoot a
DD_SIZE_MISMATCH_ERROR by finding out if there is a device description
available on your computer that matches what your device expects.

Complete the following steps to use the NI-FBUS Dialog utility to check
device description files.

1. Start the NIFB process. Wait until the process has finished initializing.

2. Select Start»All Programs»National Instruments»NI-FBUS»
Utilities»Dialog.

3. Right-click Open Descriptors and select Expand All.

4. After the expansion is complete, click Cancel to close the Expand All
window.

5. Right-click the resource block for your device (it should be under
Open Descriptors»Session»Interface Name»Device Name»
VFD Name»Resource Block Name). Select Read Object.

6. Select the Read by Name radio button and enter MANUFAC_ID as the
name. Click the Read button. Write down the hexidecimal number
found in parenthesis (0xnumber) in the name column of Table B-1.

7. Repeat step 6 for the name DEV_TYPE.

8. Repeat step 6 for the name DEV_REV.

9. Repeat step 6 for the name DD_REV.

10. Repeat steps 5–9 for each device, then close the NI-FBUS Dialog
utility.

Table B-1. Device Names

Resource Block Parameter Name

MANUFAC_ID

DEV_TYPE

DEV_REV

DD_REV

Appendix B Troubleshooting and Common Questions

© National Instruments Corporation B-5 NI-FBUS Hardware and Software User Manual

11. In the Interface Configuration Utility, click the DD Info button. Write
down the base directory specified for device descriptions. Close the
Interface Configuration Utility.

12. Use Windows Explorer to view the contents of the base directory
specified in the Interface Configuration Utility. The Fieldbus
specification defines the directory hierarchy for storing device
descriptions. There is a different subdirectory for each device
manufacturer. Under the base directory, you should see a directory
with the number from step 6 for the first device.

13. Under the appropriate manufacturer directory, there is a directory for
each device type that you have from that manufacturer. Check to make
sure that you see a directory with the number from step 7.

14. Under the appropriate device type directory, there are the individual
device descriptions. The device description file name is a combination
of the device revision (the number from step 8) and the device
description revision (the number from step 9). The device revision is
the first two digits, and the device description revision is the second
two digits. For example, if your number from step 8 was 2 and from
step 9 was 1, you should see files called 0201.ffo and 0201.sym.
Device descriptions are backward-compatible. This means that instead
of seeing 0201, you might see 0202. This is allowed by the Fieldbus
specification. Also, having additional files in this directory is not a
problem. The NI-FBUS Configurator will use the most recent device
description revision for a given device revision. If you do not have the
appropriate .ffo and .sym files, you must obtain them from the
device manufacturer. Be sure to properly import them by clicking
DD Info and using the Import DD button in the Interface
Configuration Utility.

15. Repeat steps 12–14 for each device.

The second cause for this problem is when the contents of the file do
not accurately describe the device characteristics, even if the device
identification information matches the file identification information.
This problem is caused when a device manufacturer makes a change to
the firmware of the device without incrementing the device revision, in
violation of the FOUNDATION™ Fieldbus recommendation. If this is the case,
you must contact your device manufacturer for a resolution.

Appendix B Troubleshooting and Common Questions

NI-FBUS Hardware and Software User Manual B-6 ni.com

USB-8486 Troubleshooting
The H1 Fieldbus LED flashes red.

The USB-8486 encountered an error during the Power-On Self-Test
(P.O.S.T.). Complete the following steps to correct the issue.

1. Remove the USB-8486 from the computer and close NI-FBUS
Communications Manager.

2. Connect the USB-8486 to another USB port in the system.

3. Start the NI-FBUS Communication Manager.

If the H1 Fieldbus LED still flashes red, contact National Instruments
through the information provided in Appendix C, Technical Support and
Professional Services.

The H1 Fieldbus LED is solid red.

The USB-8486 H1 Fieldbus port encountered a fatal network error.
Complete the following steps to correct the issue.

1. Remove the USB-8486 from the computer and close NI-FBUS
Communications Manager

2. Re-connect the USB-8486 to the USB port of the system again.

3. Restart the NI-FBUS Communication Manager and check the
H1 Fieldbus LED state.

Configuring Advanced Parameters

Caution Do not modify the Advanced parameters without good reason. If you must
modify parameters for certain devices, the device manufacturer will recommend settings.
Modifying these parameters can have an adverse affect on data throughput rates. If settings
are incorrectly modified, some devices might disappear off the bus.

In the NI-FBUS Interface Configuration Utility, click the Advanced button
on the dialog box for the port you want to configure. The Advanced Stack
Configuration dialog box is shown in Figure B-1.

Appendix B Troubleshooting and Common Questions

© National Instruments Corporation B-7 NI-FBUS Hardware and Software User Manual

Figure B-1. Advanced Stack Configuration Dialog Box

The parameters involved in setting addresses are T1 and T3. These
parameters represent delay time values that your board uses to compensate
for the delays inherent in the device and in the set address protocol itself.
T1 describes the expected response delay of the device at a given address.
T3 describes the expected time for the device to respond at its new address.

Uninstalling the Software
If you are only using the Communications Manager, uninstall the NI-FBUS
Communications Manager. If you are using the NI-FBUS Configurator,
uninstall the NI-FBUS Configurator.

The uninstall utility does not remove the NI-FBUS directory itself or any
files in the \Data\Nvm directory. To completely uninstall the software,
manually remove the files in the \Data\Nvm directory and the NI-FBUS
directory structure.

Appendix B Troubleshooting and Common Questions

NI-FBUS Hardware and Software User Manual B-8 ni.com

HSE Linking Device

LED Indicators
The FBUS-HSE/H1 LD has seven LED indicators on the top panel and
three LEDs on the front panel, as shown in Figure B-2.

Figure B-2. LEDs on the FBUS-HSE/H1 LD

1 H1 Port1 Network Status
2 Power
3 Process

4 Ethernet Status
5 Module Status
6 TX

7 RX
8 H1 Port 2 Network Status
9 Link

2 43 761 95 8

Appendix B Troubleshooting and Common Questions

© National Instruments Corporation B-9 NI-FBUS Hardware and Software User Manual

Ethernet LEDs
The six Ethernet LEDs are located on the top panel.

The green POWER LED is lit while the FBUS-HSE/H1 LD is
powered up. This LED indicates that the power supply connected
to the FBUS-HSE/H1 LD is acceptable.

Caution Do not power down the FBUS-HSE/H1 LD while the PROCESS LED is lit.

The green PROCESS LED is lit when you update the nonvolatile flash
memory of the FBUS-HSE/H1 LD. If you want to change network settings,
save channel settings or power-up values, or upgrade its firmware, you need
to update the nonvolatile flash memory.

The red Ethernet STATUS LED is lit when the FBUS-HSE/H1 LD detects
an error. The FBUS-HSE/H1 LD indicates specific error conditions by
flashing STATUS LED a specific number of times. Table B-2 describes the
STATUS LED flashing sequences and the corresponding error conditions.

The green TX LED is lit when the FBUS-HSE/H1 LD transmits data over
the Ethernet.

The green RX LED is lit when the FBUS-HSE/H1 LD receives data from
the Ethernet. Because of unrelated network traffic, this LED blinks
occasionally even when the FBUS-HSE/H1 LD is inactive.

The green LINK LED is lit when the FBUS-HSE/H1 LD is connected to
an active Ethernet segment.

Table B-2. Ethernet STATUS LED Flashes and Corresponding Error Conditions

Number
of Flashes Error Condition

0 (stays lit) The FBUS-HSE/H1 LD has not been configured with a proper IP address.

1 The FBUS-HSE/H1 LD is in Reset mode. Switch the FBUS-HSE/H1 LD back to
Normal mode by powering down the device and sliding the switch underneath the
module.

2 The FBUS-HSE/H1 LD has detected an error in its firmware. This usually occurs
when an attempt to upgrade the firmware is interrupted. Repeat the firmware
upgrade process.

Appendix B Troubleshooting and Common Questions

NI-FBUS Hardware and Software User Manual B-10 ni.com

Module STATUS LED
The module STATUS LED is located on the front of the linking device,
between the two Fieldbus (H1 Network) connectors, as shown in
Figure B-2. It indicates whether the linking device is powered, configured,
and operating properly. Table B-3 shows how to interpret the STATUS
LED states.

Standby state indicates the linking device has passed all self tests and is
ready to operate. However, it is not functioning because no active Ethernet
segment is configured.

Operational state indicates the linking device has left standby state because
the necessary network configuration (if any) has occurred.

3 The FBUS-HSE/H1 LD cannot communicate with the NIFBUS. Ensure that the
NIFBUS is running on the computer you specified when you configured the
FBUS-HSE/H1 LD.

4 (or more) The FBUS-HSE/H1 LD has detected an unrecoverable error. Contact National
Instruments for more information of finding the cause of this error.

Table B-3. Interpretation of FBUS-HSE/H1 LD Module STATUS LED

LED State Meaning

Off No power to linking device.

Flashing red and green The FBUS-HSE/H1 LD is self-testing.

Flashing green Standby state.

Solid green Operational state.

Flashing red Major recoverable fault.

Solid red Major unrecoverable fault.

Table B-2. Ethernet STATUS LED Flashes and Corresponding Error Conditions (Continued)

Number
of Flashes Error Condition

Appendix B Troubleshooting and Common Questions

© National Instruments Corporation B-11 NI-FBUS Hardware and Software User Manual

H1 Network Status LEDs
Each Fieldbus (H1 Network) port on the linking device has an LED to
indicate the functional states of the port. Table B-4 describes each state.

USB-8486 LED Indicators
The USB-8486 has two LED indicators on the front panel, as shown in
Figure B-3.

Figure B-3. LEDs on the USB-8486

Table B-4. Description of Fieldbus Network Status LED States

LED State Meaning

Off Fieldbus port is not receiving packets.

Steady green Fieldbus port is alive as Link Active Scheduler.

Flashing green Fieldbus port is not alive as Link Active Scheduler.

Flashing red
and green

Fieldbus port is seeing traffic, but is at a default or
visitor address.

Flashing red Fieldbus port encountered a transient, nonfatal
network error.

Steady red Fieldbus port encountered a fatal network error.

1 H1 Fieldbus Port Status 2 USB Status

1

2

NI USB-8486

 NATIONAL
INSTRUMENTS

Appendix B Troubleshooting and Common Questions

NI-FBUS Hardware and Software User Manual B-12 ni.com

The USB LED is located on the front of the USB-8486, as shown in
Figure B-3. It indicates whether the USB-8486 is powered, configured, and
operating properly. Table B-5 shows how to interpret the USB LED states.

The H1 Fieldbus port on the USB-8486 has an LED to indicate the
functional states of the port. Table B-6 describes each state.

For more information about error handling, refer to the USB-8486
Troubleshooting section of this appendix.

Table B-5. Interpretation of USB-8486 USB STATUS LED

LED State Meaning

Off There is no power on the USB port , the USB-8486 is
disabled, or an error has occurred.

Solid green The USB-8486 is working in USB 2.0 full speed
mode.

Solid amber The USB-8486 is working in USB 2.0 high speed
mode.

Table B-6. Interpretation of USB-8486 H1 Fieldbus Status LED

LED State Meaning

Off The USB-8486 has not been initialized.

Solid green The Fieldbus port is disconnected from the network
or receiving nothing.

Slow flashing
green

The Fieldbus port is only receiving/transmitting
network maintenance packets.

Fast flashing
green

The Fieldbus port is receiving/ transmitting payload
traffic packets.

Flashing red The USB-8486 encountered an error during the
P.O.S.T.

Solid red The Fieldbus port encountered a fatal network error.

Appendix B Troubleshooting and Common Questions

© National Instruments Corporation B-13 NI-FBUS Hardware and Software User Manual

NI-FBUS Software
This section contains information about how to identify and solve problems
with the NI-FBUS Communications Manager software.

Startup Problems
If the NIFB process is unable to find the information it needs to start up,
error messages will appear. You may ignore these messages and continue;
however, this will result in your application not being able to communicate
with the interface devices for which the error messages appeared. These
messages tell you the information that the NIFB process is looking for
but cannot find.

If NI-FBUS is unable to connect to and initialize an interface device,
and you decide to continue NI-FBUS startup, NI-FBUS will not try to
reconnect to that interface again. This is true of all interface types supported
by this software.

If a USB-8486, PCMCIA-FBUS, or PCI-FBUS interface is configured
as a basic device, a link master device must be present on this link before
NI-FBUS will start up.

Call to Open Session Fails
If the call fails, ensure that your NI-FBUS Communications Manager
process is running and that it has not displayed any error message boxes
during startup. You can check this by maximizing and looking at the
nifb.exe console window. If the title bar does not end in “(Running),”
NI-FBUS did not start up correctly.

Set Address Problems
If you are having trouble setting the address of your device, you may
need to change some of the System Management Info parameters in
the Advanced settings of your interface port in the NI-FBUS Interface
Configuration utility. The parameters involved in setting addresses are
T1 and T3. These parameters represent delay time values that your
interface card uses to compensate for the delays inherent in the device
and in the set address protocol itself.

T1 is a parameter that describes the expected response delay of the device
at a given address. Normally, you will not need to increase this parameter;
however, if it appears that your interface card is not seeing the device
responses related to setting addresses, you can increase this value. The

Appendix B Troubleshooting and Common Questions

NI-FBUS Hardware and Software User Manual B-14 ni.com

correct value for this parameter can be dependent on the number of devices
on the link. For example, if you are using a bus monitor, you might see
a WHO_HAS_PD_TAG request going to the device to start the Set Address
sequence, and an IDENTIFY response coming back, but with the host never
continuing on to the next step of the protocol (the SET_ADDRESS packet).
This probably means that your T1 value is too small and should be
increased.

T3 is a parameter that describes the expected time for the device to respond
at its new address. This parameter is highly dependent on the number of
devices on the link, and the number of addresses being polled. Refer to the
Setting Number of Polled Addresses section for instructions on how to set
the number of polled addresses. If you are using a bus monitor, you may be
able to see the host identify a device (with the IDENTIFY packet) at the new
address, before the devices has sent its probe response (PR) packet to the
host. This is an error that is indicative of a T3 value that is too small; if this
occurs, increase your T3 value until the IDENTIFY to the new address
occurs after the PR.

All of the System Management Info timers are in units of 1/32 of a
millisecond; for instance, T3 = 32000 units means that T3 = 1 second.

Setting Number of Polled Addresses
The Fieldbus specification describes how a Link Active Scheduler device
(LAS device) probes a list of addresses to allow devices to come online
during normal operation. The LAS sends a Probe Node (PN on the bus
monitor) packet to each address in its list of addresses during operation, and
the length of time between Probe Nodes depends on the number of devices
on the link and the setting of the Link Maintenance Token Hold Time
parameter.

The Fieldbus specification describes how to tell the LAS to skip
probing certain addresses in the range to speed up how long it takes to
detect new devices on the bus (or devices that are having their addresses
changed). The two parameters involved in maintaining the list are called
FirstUnpolledNode and NumOfUnpolledNodes, and they can be found
in the NI-FBUS Interface Configuration utility advanced settings for a port,
in the DLME Master Info section. The following diagram shows how the
LAS determines the list.

Appendix B Troubleshooting and Common Questions

© National Instruments Corporation B-15 NI-FBUS Hardware and Software User Manual

In other words, FirstUnpolledNode tells the LAS the beginning of a
region of addresses to not probe, and NumOfUnpolledNodes tells the
LAS the length of that region. So if FirstUnpolledNode were 0x25, and
NumOfUnpolledNodes were 0xba, then no addresses from 0x25 to 0xdf
would be probed. That means that if a device with an address of 0x25 were
placed on this bus, the LAS would not probe it, and it would never be able
to send or receive packets on the bus.

The reason to have a NumOfUnpolledNodes whose value is nonzero is
as follows. The LAS probes every address in the list, then starts over again
at the beginning. Because a device cannot come on the bus until its address
is probed, if the LAS is probing all 255 – 16 + 1 = 240 possible addresses
and each probe node request goes out every T milliseconds, it might take
240T milliseconds for a device to get on the bus. If, however, the LAS
probed only the first 16 addresses and the last 16 addresses, it might take
32T milliseconds for the device to get on the bus. This results in the
new device being recognized almost eight times faster.

These parameters also affect the Set Address protocol, because recognizing
a device at a new address is really the same as recognizing a completely
new device, as the new address must be probed for the device to come
online. In this way, the NumOfUnpolledNodes parameter can affect the
value of the Set Address protocol parameter T3, which is described in
the Set Address Problems section. For example, increasing the
NumOfUnpolledNodes parameter might fix a SetAddress T3 problem
because it takes the device less time to be recognized at the new address.

Using Fieldbus with OPC
Starting with version 3.1, NI-FBUS has a separate OPC Data Access
Server, which is compliant with the OPC Data Access 2.0 Specification.
This OPC server supports VIEW-oriented I/O operations, and has better
performance.

NumOfUnpolledNodes

FirstUnpolledNode

Addresses

0x01 0xff

Address Polled for New Devices

Appendix B Troubleshooting and Common Questions

NI-FBUS Hardware and Software User Manual B-16 ni.com

An OPC client utility is provided with the NI-FBUS software to let you
browse Fieldbus OPC tags. Follow the instructions listed in the Installing
the OPC NI-FBUS Server section of Chapter 4, NI-FBUS CM Software, to
make the OPC server operational.

OPC Data Type Mapping Rule
The SIMPLE type and ARRAY type variables are regarded as leaf nodes
in the OPC address space. The RECORD type variables are regarded as
branch nodes, you need to access each of its member variable through this
branch node.

Table B-7 shows the data type-mapping rule.

Table B-7. OPC Data Type Mapping Rule

Meta Type
FMS Standard

Data Types OPC Data Type

Simple Boolean VT_BOOL

Integer8 VT_I1

Integer16 VT_I2

Integer32 VT_I4

Unsigned8 VT_UI1

Unsigned16 VT_UI2

Unsigned32 VT_UI4

Floating Point VT_R4

Visible String VT_BSTR

Octet String VT_ARRAY | VT_UI1

Date VT_DATE

Time of Day VT_DATE

Time Difference VT_DATE

Bit String VT_ARRAY | VT_UI1

Time Value VT_DATE

Appendix B Troubleshooting and Common Questions

© National Instruments Corporation B-17 NI-FBUS Hardware and Software User Manual

Lookout
1. Create one or more OPCClient objects in your Lookout process.

2. Select the NIFB_OPCDA.3 server from the drop-down list of
OPC servers.

3. Set the Activate member of the OPC client object to FALSE using
one of the following methods:

• Edit the connections for the OPCClient object and set the
Activate member to FALSE.

• Create a switch object on the Control Panel with the position
source set to Remote. Then, set the Remote source to the Activate
member of the OPCClient object. Leave edit mode, then set the
switch to the off (FALSE) position.

4. Add all the items you are interested in to the OPCClient object(s).

Array Boolean VT_ARRAY | VT_BOOL

Integer8 VT_ARRAY | VT_I1

Integer16 VT_ARRAY | VT_I2

Integer32 VT_ARRAY | VT_I4

Unsigned8 VT_ARRAY | VT_UI1

Unsigned16 VT_ARRAY | VT_UI2

Unsigned32 VT_ARRAY | VT_UI4

Floating Point VT_ARRAY | VT_R4

Visible String VT_ARRAY | VT_BSTR

Octet String —

Date VT_ARRAY | VT_DATE

Time of Day VT_ARRAY | VT_DATE

Time Difference VT_ARRAY | VT_DATE

Bit String —

Time Value VT_ARRAY | VT_DATE

Table B-7. OPC Data Type Mapping Rule (Continued)

Meta Type
FMS Standard

Data Types OPC Data Type

Appendix B Troubleshooting and Common Questions

NI-FBUS Hardware and Software User Manual B-18 ni.com

5. Set the Activate member of the OPC client object to TRUE using
one of the following methods:

• Edit the connections for the OPCClient object and set the
Activate member to TRUE.

• Set the switch to the on (TRUE) position.

A similar deactivation/activation procedure will have to be followed while
opening a previously saved .lkp process file. The Lookout process will
always go live immediately when it is loaded. The OPC client object
Activate member is always set to TRUE at startup, even though the switch
position may indicate off/FALSE.

Server Explorer
1. Launch the Server Explorer.

2. Create an inactive OPC client group.

a. Right-click NIFB_OPCDA.3 and select Add/Edit Groups.

b. Create a group with the appropriate parameters. Ensure there is no
checkmark in the Active box.

3. Add all items.

4. Select File»OPC»Save to save the file.

5. Activate the group by right-clicking the group and selecting Activate
Group.

6. When you open the saved file and want to go live, right-click
NIFB_OPCDA.3 and select Connect to Server. After Server
Explorer has connected to the server, activate the group as described in
step 5.

LabVIEW DSC
Stop (but do not quit) the LabVIEW DSC engine before you add any items
to your current configuration. Allow the engine two to five minutes to shut
down, especially if your tag configuration file has a large number of items.
When you are done adding items, restart the engine.

Appendix B Troubleshooting and Common Questions

© National Instruments Corporation B-19 NI-FBUS Hardware and Software User Manual

Problems Using Fieldbus with Lookout
Fieldbus Objects Do Not Appear in Lookout
If you want to use the native Fieldbus objects in Lookout, you have to delete
the lookout.dat file in the Lookout directory. This file is an index
file that tells Lookout what objects it has available. Fieldbus objects are
not available by default. Lookout will regenerate the lookout.dat file the
next time it is started. When it regenerates the file, it will see that Fieldbus
software has been installed and will make the Fieldbus objects available.

Fieldbus Alarms in Lookout
In Lookout, there is a separate alarms window for Fieldbus alarms. Under
the Options menu, select Fieldbus to show this window. The window also
can be shown using traditional Lookout datamember ShowAlarms. Refer
to the entry for National Instruments Fieldbus in the Lookout Object
Reference Manual (also available from the Help menu within Lookout).

If you want alarms to appear in the main alarm window (rather than the
Fieldbus alarms window), you need to create Lookout alarm objects.

© National Instruments Corporation C-1 NI-FBUS Hardware and Software User Manual

C
Technical Support and
Professional Services

Visit the following sections of the award-winning National Instruments
Web site at ni.com for technical support and professional services:

• Support—Technical support at ni.com/support includes the
following resources:

– Self-Help Technical Resources—For answers and solutions,
visit ni.com/support for software drivers and updates,
a searchable KnowledgeBase, product manuals, step-by-step
troubleshooting wizards, thousands of example programs,
tutorials, application notes, instrument drivers, and so on.
Registered users also receive access to the NI Discussion Forums
at ni.com/forums. NI Applications Engineers make sure every
question submitted online receives an answer.

– Standard Service Program Membership—This program
entitles members to direct access to NI Applications Engineers
via phone and email for one-to-one technical support, as well as
exclusive access to eLearning training modules at ni.com/
eLearning. NI offers complementary membership for a full year
after purchase, after which you may renew to continue your
benefits.

For information about other technical support options in your
area, visit ni.com/services, or contact your local office at
ni.com/contact.

• Training and Certification—Visit ni.com/training for training
and certification program information. You can also register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. To learn more, call your local
NI office or visit ni.com/alliance.

• Declaration of Conformity (DoC)—A DoC is our claim of
compliance with the Council of the European Communities using
the manufacturer’s declaration of conformity. This system affords

Appendix C Technical Support and Professional Services

NI-FBUS Hardware and Software User Manual C-2 ni.com

the user protection for electromagnetic compatibility (EMC) and
product safety. You can obtain the DoC for your product by visiting
ni.com/certification.

• Calibration Certificate—If your product supports calibration,
you can obtain the calibration certificate for your product at
ni.com/calibration.

You also can visit the Worldwide Offices section of ni.com/niglobal to
access the branch office Web sites, which provide up-to-date contact
information, support phone numbers, email addresses, and current events.

© National Instruments Corporation G-1 NI-FBUS Hardware and Software User Manual

Glossary

Symbol Prefix Value

p pico 10–12

n nano 10–9

μ micro 10– 6

m milli 10–3

k kilo 103

M mega 106

G giga 109

T tera 1012

Numbers
4–20 mA system Traditional control system in which a computer or control unit

provides control for a network of devices controlled by 4–20 mA
signals.

A
Address Character code that identifies a specific location (or series of

locations) in memory.

Administrative Function An NI-FBUS function that deals with administrative tasks, such as
returning descriptors and closing descriptors.

Alarm A notification the NI-FBUS Communications Manager software
sends when it detects that a block leaves or returns to a particular
state.

Alarm condition A notification that a Fieldbus device sends to another Fieldbus device
or interface when it leaves or returns to a particular state.

Alert An alarm or event.

Alert function A function that receives or acknowledges an alert.

Glossary

NI-FBUS Hardware and Software User Manual G-2 ni.com

Analog A description of a continuously variable signal or a circuit or device
designed to handle such signals.

API See Application Programmer Interface.

Application Function blocks.

Application Programmer
Interface

A message format that an application uses to communicate with
another entity that provides services to it.

Array Ordered, indexed list of data elements of the same type.

Attribute Properties of parameters.

B
Basic device A device that can communicate on the Fieldbus, but cannot become

the LAS.

Bitstring A data type in the object description.

Block A logical software unit that makes up one named copy of a block and
the associated parameters its block type specifies. The values of the
parameters persist from one invocation of the block to the next. It can
be a resource block, transducer block, or function block residing
within a virtual field device.

Block tag A character string name that uniquely identifies a block on a Fieldbus
network.

Buffer Temporary storage for acquired or generated data.

Bus The group of conductors that interconnect individual circuitry in a
computer. Typically, a bus is the expansion vehicle to which I/O or
other devices are connected. Examples of PC buses are the ISA and
PCI buses.

C
Cable A number of wires and shield in a single sheath.

Channel A pin or wire lead to which you apply or from which you read the
analog or digital signal.

Client A device that sends a request for communication on the bus.

Communication stack Performs the services required to interface the user application to the
physical layer.

Glossary

© National Instruments Corporation G-3 NI-FBUS Hardware and Software User Manual

Connection Management The service the NI-FBUS Communications Manager provides by
handling Virtual Communication Relationships.

Control loop A set of connections between blocks used to perform a control
algorithm.

Controller An intelligent device (usually involving a CPU) that is capable of
controlling other devices.

ControlNet A 5 Mbit/s communications protocol based on Producer/Consumer
technology.

Core Function The basic functions that the NI-FBUS Communications Manager
software performs, such as reading and writing block parameters.

D
Data Link Layer The second-lowest layer in the ISO seven-layer model (layer two).

The Data Link Layer splits data into frames to send on the physical
layer, receives acknowledgment frames, and re-transmits frames if
they are not received correctly. It also performs error checking to
maintain a sound virtual channel to the next layer.

DD See Device Description.

Descriptor A number returned to the application by the NI-FBUS
Communications Manager, used to specify a target for future
NI-FBUS calls.

Device A sensor, actuator, or control equipment attached to the Fieldbus.

Device Description A machine-readable description of all the blocks and block
parameters of a device.

Device Description
Language

A formal programming language that defines the parameters of the
blocks. It also defines attributes of parameters and blocks like help
strings in different languages, ranges of values for parameters,
and so on.

Device Description
Service

A set of functions that applications use to access Device Descriptions.

Device tag A name you assign to a Fieldbus device.

Directory A structure for organizing files into convenient groups. A directory
is like an address showing where files are located. A directory can
contain files or subdirectories of files.

Glossary

NI-FBUS Hardware and Software User Manual G-4 ni.com

DLL See Dynamic Link Library.

Driver Device driver software installed within the operating system.

Dynamic Link Library A library of functions and subroutines that links to an application
at run time.

E
EMI Electromagnetic interference.

Event An occurrence on a device that causes a Fieldbus entity to send the
Fieldbus event message.

F
FB Function Block.

Field device A Fieldbus device connected directly to a Fieldbus.

Fieldbus An all-digital, two-way communication system that connects control
systems to instrumentation. A process control local area network
defined by ISA standard S50.02.

Fieldbus cable Shielded, twisted pair cable made specifically for Fieldbus that has
characteristics important for good signal transmission and are within
the requirements of the Fieldbus standard.

Fieldbus Foundation An organization that developed a Fieldbus network specifically based
upon the work and principles of the ISA/IEC standards committees.

Fieldbus Messaging
Specification

The layer of the communication stack that defines a model for
applications to interact over the Fieldbus. The services FMS provides
allow you to read and write information about the OD, read and write
the data variables described in the OD, and perform other activities
such as uploading/downloading data and invoking programs inside
a device.

Fieldbus Network Address Location of a board or device on the Fieldbus; the Fieldbus node
address.

FMS See Fieldbus Messaging Specification.

FOUNDATION™ Fieldbus
Specification

The communications network specification that the Fieldbus
Foundation created.

Glossary

© National Instruments Corporation G-5 NI-FBUS Hardware and Software User Manual

Function block A named block consisting of one or more input, output, and contained
parameters. The block performs some control function as its
algorithm. Function blocks are the core components you control
a system with. The Fieldbus Foundation defines standard sets of
function blocks. There are ten function blocks for the most basic
control and I/O functions. Manufacturers can define their own
function blocks.

Function Block Application The block diagram that represents your control strategy.

H
H1 The 31.25 kbit/second type of Fieldbus.

Hard code To permanently establish something that should be variable in a
program.

Header file A C-language source file containing important definitions and
function prototypes.

HMI Human-Machine Interface. A graphical user interface for the process
with supervisory control and data acquisition capability.

Host device A computer or controller on a Fieldbus network.

Hz Hertz.

I
I/O Input/output.

IEC International Electrotechnical Commission. A technical standards
committee which is at the same level as the ISO.

in. Inches.

Index An integer that the Fieldbus specification assigns to a Fieldbus object
or a device that you can use to refer to the object. A value in the object
dictionary used to refer to a single object.

ISA Industry Standard Architecture.

Glossary

NI-FBUS Hardware and Software User Manual G-6 ni.com

K
Kbits Kilobits.

Kernel The set of programs in an operating system that implements basic
system functions.

Kernel mode The mode in which device drivers run on Windows.

L
LabVIEW DSC The LabVIEW Datalogging and Supervisory Control (DSC) Module

builds on the power of LabVIEW for high channel count and
distributed applications. It adds easy networking, channel and
I/O management, alarm and event management, historical
datalogging, real-time trending, and OPC integration to the
LabVIEW environment.

LAS See Link Active Schedule.

Link A FOUNDATION™ Fieldbus network is made up of devices connected by
a serial bus. This serial bus is called a link (also known as a segment).

Link Active Schedule A schedule of times in the macrocycle when devices must publish
their output values on the Fieldbus.

Link Active Scheduler The Fieldbus device that is currently controlling access to the
Fieldbus. A device that is responsible for keeping a link operational.
The LAS executes the link schedule, circulates tokens, distributes
time, and probes for new devices.

Link master device A device that is capable of becoming the LAS.

Linkage A connection between function blocks.

Linkage object An object resident in a device that defines connections between
function block input and output across the network. Linkage objects
also specify trending connections.

Live list The list of all devices that are properly responding to the Pass Token.

LM Link Master.

Lookout National Instruments Lookout is a full-featured object-based
automation software system that delivers unparalleled power and
ease of use in demanding industrial measurement and automation
applications.

Glossary

© National Instruments Corporation G-7 NI-FBUS Hardware and Software User Manual

M
Macrocycle The least common multiple of all the loop times on a given link,

or one iteration of a the process control loop.

Manufacturer’s
identification

An identifier used to correlate the device type and revision with its
device description and device description revision.

Menu An area accessible from the command bar that displays a subset of the
possible command choices. In the NI-FBUS Configurator, refers to
menus defined by the manufacturer for a given block.

Method Methods describe operating procedures to guide a user through a
sequence of actions.

Mode Type of communication.

N
Network address The Fieldbus network address of a device.

Network Management A layer of the FOUNDATION™ Fieldbus communication stack that
contains objects that other layers of the communication stack use,
such as Data Link, FAS, and FMS. You can read and write SM and
NM objects over the Fieldbus using FMS Read and FMS Write
services.

NI-FBUS API The function calls provided by NI-FBUS Communication Manager.

NI-FBUS Communications
Manager

Software shipped with National Instruments Fieldbus interfaces that
lets you read and write values. It does not include configuration
capabilities.

NI-FBUS Configurator National Instruments Fieldbus configuration software. With it, you
can set device addresses, clear devices, change modes, and read and
write to the devices.

NI-FBUS Fieldbus
Configuration System

See NI-FBUS Configurator.

NI-FBUS process Process that must be running in the background for you to use your
NI-FBUS interface boards (USB-8486, PCMCIA-FBUS, or
PCI-FBUS) or Linking Devices (HSE-H1 Linking Device or
Controlnet-FF Linking Device) to communicate between the
application and Fieldbus.

Glossary

NI-FBUS Hardware and Software User Manual G-8 ni.com

Nifb.exe The NIFB process that must be running in the background for you to
use your USB-8486, PCMCIA-FBUS, or PCI-FBUS interface to
communicate between the board and the Fieldbus.

Node Junction or branch point in a circuit.

O
Object An element of an object dictionary.

Object Dictionary A structure in a device that describes data that can be communicated
on the Fieldbus. The object dictionary is a lookup table that gives
information such as data type and units about a value that can be
read from or written to a device.

Octet A single 8-bit value.

OD See Object Dictionary.

OPC OLE for Process Control.

Output parameter A block parameter that sends data to another block.

P
Parameter One of a set of network-visible values that makes up a function block.

PC Personal Computer.

PCMCIA Personal Computer Memory Card International Association.

PD Proportional Derivative.

Physical device A single device residing at a unique address on the Fieldbus.

PID Proportional/Integral/Derivative. A common control function block
algorithm that uses proportions, integrals, and derivatives in
calculation.

PN Probe Node.

Poll To repeatedly inspect a variable or function block to acquire data.

Port A communications connection on a computer or remote controller.

PR Probe Response.

Glossary

© National Instruments Corporation G-9 NI-FBUS Hardware and Software User Manual

Program A set of instructions the computer can follow, usually in a binary file
format, such as a .exe file.

Publisher A device that has at least one function block with its output value
connected to the input of another device.

R
Repeater Boost the signals to and from the further link.

Resource block A special block containing parameters that describe the operation
of the device and general characteristics of a device, such as
manufacturer and device name. Only one resource block per device
is allowed.

Roundcard A hardware interface for developing FOUNDATION™
Fieldbus-compliant devices.

S
s Seconds.

Sample type Specifies how trends are sampled on a device, whether by averaging
data or by instantaneous sampling.

Segment See Link.

Sensor A device that responds to a physical stimulus (heat, light, sound,
pressure, motion, flow, and so on), and produces a corresponding
electrical signal.

Server Device that receives a message request.

Service Services allow user applications to send messages to each other
across the Fieldbus using a standard set of message formats.

Session A communication path between an application and the NI-FBUS
Communications Manager.

Shield Metal grounded cover used to protect a wire, component or piece of
equipment from stray magnetic and/or electric fields.

Signal An extension of the IEEE 488.2 standard that defines a standard
programming command set and syntax for device-specific
operations.

Glossary

NI-FBUS Hardware and Software User Manual G-10 ni.com

Spur A secondary route having a junction to the primary route in a
network.

Stack A set of hardware registers or a reserved amount of memory used for
calculations or to keep track of internal operations.

Static library A library of functions/subroutines that you must link to your
application as one of the final steps of compilation, as opposed to a
Dynamic Link Library, which links to your application at run time.

Stub See Spur.

Subscriber A device that has at least one function block with its input value
connected to the output of another device.

Surge Large, unwanted voltage or current on wires. Generally caused by
lightning or nearby heavy electrical power use.

Surge suppressor A device used to discharge surges to ground.

Symbol file A Fieldbus Foundation or device manufacturer-supplied file that
contains the ASCII names for all the objects in a device.

System Management A layer of the FOUNDATION™ Fieldbus communication stack that
assigns addresses and physical device tags, maintains the function
block schedule for the function blocks in that device, and distributes
application time. You also can locate a device or a function block
tag through SM.

T
Tag A name you can define for a block, virtual field device, or device.

Thread An operating system object that consists of a flow of control within
a process. In some operating systems, a single process can have
multiple threads, each of which can access the same data space
within the process. However, each thread has its own stack and
all threads can execute concurrently with one another (either on
multiple processors, or by time-sharing a single processor).

Transducer block A block that is an interface to the physical, sensing hardware in
the device. It also performs the digitizing, filtering, and scaling
conversions needed to present input data to function blocks, and
converts output data from function blocks. Transducer blocks
decouple the function blocks from the hardware details of a given
device, allowing generic indication of function block input and
output. Manufacturers can define their own transducer blocks.

Glossary

© National Instruments Corporation G-11 NI-FBUS Hardware and Software User Manual

Trend A Fieldbus object that allows a device to sample a process variable
periodically, then transmit a history of the values on the network.

Trend function An NI-FBUS call related to trends.

U
USB Universal Serial Bus.

USB-8486 NI USB-8486 FOUNDATION™ Fieldbus interface.

V
VCR See Virtual Communication Relationship.

VFD See Virtual Field Device.

View objects Predefined groupings of parameter sets that HMI applications use.

Virtual Communication
Relationship

Preconfigured or negotiated connections between virtual field
devices on a network.

Virtual Field Device The virtual field device is a model for remotely viewing data
described in the object dictionary. The services provided by the
Fieldbus Messaging Specification allow you to read and write
information about the object dictionary, read and write the data
variables described in the object dictionary, and perform other
activities such as uploading/downloading data and invoking
programs inside a device. A model for remotely viewing data
described in the object dictionary.

W
Waveform Multiple voltage readings taken at a specific sampling rate.

© National Instruments Corporation I-1 NI-FBUS Hardware and Software User Manual

Index

A
address setting troubleshooting, B-13
administrative functions, 4-2

list of functions (table), 6-1
nifClose, 6-2
nifDownloadDomain, 6-4
nifGetBlockList, 6-5
nifGetDeviceList, 6-7
nifGetInterfaceList, 6-10
nifGetVFDList, 6-12
nifOpenBlock, 6-14
nifOpenLink, 6-16
nifOpenPhysicalDevice, 6-18
nifOpenSession, 6-20
nifOpenVfd, 6-21
nifShutdownCM, 6-23
nifStartupCM, 6-24

advanced parameters, configuring, B-6
advanced stack configuration dialog box

(figure), B-7
alert and trend functions, 4-4

list of functions (table), 6-56
nifAcknowledgeAlarm, 6-57
nifWaitAlert, 6-59
nifWaitAlert2, 6-61
nifWaitTrend, 6-64

applications development
administrative functions, 4-2
alert and trend functions, 4-4
C++, 5-1
choosing level of communication, 4-7
compiling, linking and running, 4-13
core functions, 4-3
developing your NI-FBUS

Communications Manager application,
4-7

device description functions, 4-5

LabVIEW, 5-1
name or index access, 4-7
.NET class libraries, 5-2
NI-FBUS Dialog Utility, 4-11
single-thread versus multi-thread

applications
multi-thread, 4-8
single-thread, 4-8

using the NI-FBUS Communications
Manager process, 4-6

Visual Basic, 5-2
writing, 4-12

B
board renumbering (table), 2-17

C
cable connector

pinout for FBUS-HSE/H1 D-SUB cable,
3-7

pinout for FBUS-HSE/H1 Ethernet cable,
3-6

pinout for PCI-FBUS cable, 3-1
pinout for PCMCIA-FBUS cable, 3-2

figure, 3-2
calibration certificate (NI resources), C-2
call to open session fails, B-13
common questions, B-1
communication level, choosing for

applications, 4-7
communication parameters, setting, 2-15
configuration

advanced parameters, B-6
Link Active Schedule file, 4-17
troubleshooting interface problems, B-2

connector, Fieldbus (figure), 3-4

Index

NI-FBUS Hardware and Software User Manual I-2 ni.com

conventions used in the manual, xi
core functions, 4-3

list of functions (table), 6-26
nifFreeObjectAttributes, 6-27
nifFreeObjectType, 6-28
nifGetObjectAttributes, 6-29
nifGetObjectName, 6-32
nifGetObjectSize, 6-35
nifGetObjectType, 6-38
nifReadObject, 6-44
nifReadObjectList, 6-48
nifWriteObject, 6-51
using NI-FBUS interface macros, 6-55

D
Declaration of Conformity (NI resources), C-1
developing applications. See applications

development
device description

functions, 4-5
importing, 2-18

device list, obtaining with NI-FBUS Dialog
Utility, 4-14

device names, B-4
diagnostic tools (NI resources), C-1
dialog utility. See NI-FBUS Dialog Utility
documentation

conventions used in manual, xi
NI resources, C-1
related documentation, xii

downloading schedule to interface, 4-15
drivers (NI resources), C-1

E
error messages, B-1
Ethernet

cable wiring connections (table), 3-6
STATUS LED flashes and corresponding

errors (table), B-9

Ethernet LEDs
LINK, B-9
POWER, B-9
PROCESS, B-9
RX, B-9
STATUS, B-9
TX, B-9

examples (NI resources), C-1

F
FBUS-HSE/H1 Linking Device (LD)

cabling and connectors, 3-5
connector pinout (figure), 3-7
connectors (figure), 2-14
D-SUB cable connector pinout, 3-7
Ethernet cable connector pinout, 3-6
LEDs

Ethernet LEDs, B-11
Ethernet STATUS LED flashes and

corresponding errors (table), B-9
figure, B-8
H1 network status LEDs (table),

B-11
module STATUS LED (table), B-10
troubleshooting, B-8

mounting on a DIN rail (figure), 2-13
power connection pinout (figure), 2-15
specifications, A-10

Fieldbus
connector (figure), 3-3
network

status LEDs, B-11
USB-8486 status LEDs, B-11

functions. See NI-FBUS functions

H
H1 Device

MIB list parameters, 4-10
MIB parameters, 4-10

Index

© National Instruments Corporation I-3 NI-FBUS Hardware and Software User Manual

H1 network status LEDs, B-11
hardware

Ethernet
cable wiring connections (table), 3-6

Ethernet LEDs
figure, B-8
LINK, B-9
POWER, B-9
PROCESS, B-9
RX, B-9
STATUS, B-9
TX, B-9

installation, 2-2
LEDs

Ethernet STATUS
flashes and corresponding errors

(table), B-9
H1 network status LEDs (table),

B-11
troubleshooting, B-8
USB status LEDs (table), B-12
USB-8486 H1 Fieldbus status LEDs

(table), B-12
module STATUS LED (table), B-10
mounting on a DIN rail (figure), 2-13
power connection pinout (figure), 2-15
USB-8486 LEDs (figure), B-11

hardware interfaces for NI-FBUS
Communications Manager, 4-1

help, technical support, C-1
HSE Device

as hardware interface for NI-FBUS
Communications Manager, 4-1

MIB list parameters, 4-11
MIB parameters, 4-11

I
import device descriptions, 2-18
index-based access, 4-7

installation and configuration, 2-1
testing, 2-17

installation of OPC NI-FBUS Server, 4-2
instrument drivers (NI resources), C-1
interface information, changing or deleting

existing information, 2-17
interface macros, NI-FBUS, 6-55
interface name, setting, 2-15

K
KnowledgeBase, C-1

L
LabVIEW DSC, troubleshooting, B-18
LEDs

Ethernet LEDs, B-9
figure, B-8
H1 network status LEDs (table), B-11
module STATUS LED (table), B-10
on top panel (figure), B-8
POWER, 2-15
troubleshooting, B-8
USB status LEDs (table), B-12
USB-8486 H1 Fieldbus status LEDs

(table), B-12
Link Active Schedule file

configuring, 4-17
format, 4-18
names of sections, 4-18
overview, 4-17
setting number of polled addresses, B-14
variable names and values (table)

sequence section (table), 4-19
subschedule section (table), 4-19
variable N and values for sequences

section (table), 4-19
linking applications, 4-13

Index

NI-FBUS Hardware and Software User Manual I-4 ni.com

Lookout troubleshooting
Fieldbus alarms in Lookout, B-19
Fieldbus objects do not appear in

Lookout, B-19
OPC NI-FBUS server problems, B-17

M
Management Information Base (MIB)

parameters
access to, 4-9
H1 Device MIB list parameters, 4-10
H1 Device MIB parameters, 4-10
HSE Device MIB list parameters, 4-11
HSE Device MIB parameters, 4-11

module STATUS LED, B-10
multi-thread applications, 4-8

N
name-based access, 4-7
National Instruments support and services,

C-1
nifAcknowledgeAlarm function, 6-57
NIFB troubleshooting, B-2
NI-FBUS Communications Manager

developing your application, 4-7
hardware interfaces, 4-1
introduction, 4-1
NIFB process, using, 4-6
overview, 1-1, 1-2, 4-1
process, purpose and use, 4-6

NI-FBUS Dialog Utility
applications development, 4-11
downloading schedule to interface, 4-15
examples, 4-14
obtaining a device list, 4-14
overview, 4-14
parameter, reading with TAG.PARAM

access, 4-16
waiting for a trend, 4-16

NI-FBUS functions
administrative functions, 4-2
alert and trend functions, 4-4
core functions, 4-3
device description functions, 4-5
overview, 4-2

nifClose function, 6-2
nifDownloadDomain function, 6-4
nifFreeObjectAttributes function, 6-27
nifFreeObjectType function, 6-28
nifGetBlockList function, 6-5
nifGetDeviceList function, 4-7, 4-8, 4-12, 6-7
nifGetInterfaceList function, 6-10
nifGetObjectAttributes function, 4-5, 6-29
nifGetObjectName function, 6-32
nifGetObjectSize function, 6-35
nifGetObjectType function, 6-38

object codes for the nifObjTypeList_t
data structure (table), 6-41, 6-42

nifGetVFDList function, 6-12
nifOpenBlock function, 6-14
nifOpenLink function, 6-16
nifOpenPhysicalDevice function, 6-18
nifOpenSession function, 4-12, 6-20
nifOpenVfd function, 6-21
nifReadObject function, 6-44
nifReadObjectList function, 6-48
nifShutdownCM function, 6-23
nifStartupCM function, 6-24
nifWaitAlert function, 4-8, 4-12, 6-59
nifWaitAlert2 function, 4-8, 4-12, 6-61
nifWaitTrend function, 4-8, 4-12, 6-64
nifWriteObject function, 6-51

O
object dictionary entries, access to, 4-9
OPC NI-FBUS server

installing, 4-2
troubleshooting, using Fieldbus with

OPC, B-15

Index

© National Instruments Corporation I-5 NI-FBUS Hardware and Software User Manual

LabVIEW DSC, B-18
Lookout, B-17
Server Explorer, B-18

open session calls, failure of, B-13

P
parameter, reading with TAG.PARAM access,

4-16
PCI-FBUS

cable connector pinout, 3-1
cabling and connectors, 3-1
Fieldbus connector pinout (figure), 3-1
specifications, A-1

PCMCIA-FBUS
cable (figure), 3-2
cable connector pinout, 3-2
cabling and connectors, 3-2
specifications, A-4

pinout
DB-9 cable connector pinout (figure), 3-5
FBUS-HSE/H1 D-SUB cable connector,

3-7
FBUS-HSE/H1 Ethernet cable connector,

3-6
Fieldbus connector (figure), 3-3
Fieldbus connector pinout (figure), 3-1,

3-4
PCI-FBUS cable connector, 3-1
PCMCIA-FBUS cable (figure), 3-2
PCMCIA-FBUS cable connector, 3-2
screw terminal block (figure), 3-3

polled addresses, setting number of, B-14
power connection pinout (figure), 2-15
programming examples (NI resources), C-1

R
related documentation, xii
running applications, 4-13

S
sample programs, 4-13
schedule, downloading, 4-15
screw terminal block pinout (figure), 3-3
Server Explorer, and OPC NI-FBUS server

troubleshooting, B-18
set address troubleshooting, B-13
single-thread applications, 4-8
software

developing applications, 4-2
alert and trend functions, 4-4
compile, link and running

applications, 4-12, 4-13
core functions, 4-3
developing your NI-FBUS

Communications Manager
application, 4-7

device description functions, 4-5
using the NI-FBUS Communications

Manager process, 4-6
write your application, 4-12

installation, 2-1
LabVIEW DSC, troubleshooting, B-18
Lookout, troubleshooting, B-17
NI resources, C-1
NI-FBUS Communications Manager

developing your applications, 4-7
NIFB process, using, 4-6
overview of, 1-1, 1-2, 4-1

sample programs, 4-13
Server Explorer, B-18
uninstalling, B-7

specifications, A-1
FBUS-HSE/H1, A-10
PCI-FBUS/2, A-1
PCMCIA-FBUS, A-4
USB-8486, A-7

startup problems, B-13
support, technical, C-1

Index

NI-FBUS Hardware and Software User Manual I-6 ni.com

T
TAG.PARAM access for reading parameters,

4-16
technical support, C-1
training and certification (NI resources), C-1
trends, waiting for, 4-16
troubleshooting, B-1

call to open session fails, B-13
LabVIEW DSC, B-18
Lookout, B-17

Fieldbus alarms in Lookout, B-19
Fieldbus objects do not appear in

Lookout, B-19
NI resources, C-1
Server Explorer, B-18
set address, B-13

number of polled addresses, B-14
startup problems, B-13
USB-8486, B-6
using Fieldbus with OPC, B-15
using manufacturer-defined features, B-3

U
uninstalling the software, B-7
USB-8486

cabling and connectors, 3-4
DB-9 cable connector pinout (figure), 3-5
Fieldbus connector (figure), 3-4
Fieldbus connector pinout (figure), 3-4
H1 Fieldbus status LEDs (table), B-12
LEDs (figure), B-11
specifications, A-7
status LEDs, B-11
troubleshooting, B-6
USB status LEDs (table), B-12

W
waiting for trends, 4-16
Web resources, C-1
write your application

See also applications development
blocking functions, 4-12

	NI-FBUS Hardware and Software User Manual
	Support
	Worldwide Technical Support and Product Information
	Worldwide Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	Export Compliance Information
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Compliance
	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction
	FF Overview
	NI-FBUS Hardware Products
	PCI, PCMCIA, and USB
	HSE

	NI-FBUS Software Products
	Communications Manager
	Configurator
	Monitor

	Chapter 2 Installation and Configuration
	Installing the Software
	Installing the Hardware
	Install Your PCI-FBUS Card
	Figure 2-1. Installing the PCI-FBUS Card

	Install Your PCMCIA-FBUS Card
	Figure 2-2. Inserting the PCMCIA-FBUS Card

	Install Your USB-8486
	Figure 2-3. Connecting the USB-8486 to a Desktop PC
	Figure 2-4. Connecting the USB-8486 to a Laptop PC
	Mount and Connect Your USB-8486
	Figure 2-5. Fastening a DIN Rail Clip to the USB-8486
	Figure 2-6. Clipping the USB-8486 to a DIN Rail
	Figure 2-7. Mounting the USB-8486 to a Broad or Panel
	Figure 2-8. Dimensions of the Mounting Tab and Notch
	Figure 2-9. Connecting the USB-8486 to a CompactRIO

	Install Your FBUS-HSE/H1 LD
	Figure 2-10. DIN Rail Clip
	Figure 2-11. Mounting the FBUS-HSE/H1 LD on a DIN Rail
	Figure 2-12. Connectors on the FBUS-HSE/H1 LD
	Figure 2-13. FBUS-HSE/H1 Power Connector Pinout

	Setting the Communication Parameters and Interface Name
	Testing the Installation
	Changing or Deleting Existing Interface Information
	Table 2-1. Board Renumbering

	Importing Device Descriptions

	Chapter 3 Connector and Cabling
	PCI-FBUS/2
	Fieldbus Cable Connector Pinout
	Figure 3-1. Fieldbus Connector Pinout for the PCI-FBUS

	PCMCIA-FBUS
	Pinout Information
	Figure 3-2. PCMCIA-FBUS Cable
	Figure 3-3. Fieldbus Connector Pinout
	Figure 3-4. Screw Terminal Block Pinout

	USB-8486
	Figure 3-5. Male DB-9 Connector Pinout for the USB-8486
	9-Pin D-SUB (DB-9) Cable Information
	Figure 3-6. DB-9 Cable for the USB-8486
	Figure 3-7. Pinout for 9-Pin D-SUB Female Connector of the DB-9 Cable
	Table 3-1. Information for Cable Pigtails

	FBUS-HSE/H1 Linking Device
	Ethernet Cable Pinouts
	Table 3-2. Ethernet Cable Wiring Connections
	Figure 3-8. Ethernet Cable Layout

	Fieldbus H1 Pinout Information
	Figure 3-9. FBUS-HSE/H1 LD Connector Pinout

	Chapter 4 NI-FBUS CM Software
	NI-FBUS Communications Manager Overview
	Installing the OPC NI-FBUS Server
	NI-FBUS Functions Overview
	Administrative Functions
	Example: Using Administrative Functions

	Core Functions
	Example: Using Core Functions

	Alert and Trend Functions
	Device Description Functions
	Using the NI-FBUS Communications Manager Process

	Developing Your NI-FBUS Communications Manager Application
	Choose Your Level of Communication
	Choose to Access by Name or Index
	Choose to Write Single-Thread or Multi-Thread Applications
	Single-Thread Applications
	Multi-Thread Applications

	Access Object Dictionary Entries
	Access Management Information Base (MIB) Parameters
	H1 Device MIB List Parameters
	H1 Device MIB Parameters
	HSE Device MIB List Parameters
	HSE Device MIB Parameters

	Use the NI-FBUS Dialog Utility to Communicate with Devices
	Write Your Application
	Compile, Link, and Run Your Application

	Sample Programs
	NI-FBUS Dialog Utility
	NI-FBUS Dialog Examples
	Example 1. Get a Device List
	Example 2. Download a Schedule to an Interface
	Example 3. Read a Parameter Using TAG.PARAM Access
	Example 4. Wait for a Trend

	Configuring the Link Active Schedule File
	Introduction to the Link Active Schedule File
	Format of the Link Active Schedule File
	Table 4-1. Valid Variable Names and Values for the Schedule Summary Section
	Table 4-2. Valid Variable Names and Values for the Subschedule Section
	Table 4-3. Valid Variable Names and Values for the Sequence Section
	Table 4-4. Valid Variable Names Including the Variable N and Values for the Sequence Section

	Chapter 5 Developing The Application
	LabVIEW
	Visual C++
	Visual Basic
	.NET Class Libraries
	OPC Server
	OPC Data Type Mapping Rule
	Table 5-1. OPC Data Type Mapping Rule

	Chapter 6 NI-FBUS Function Reference
	Administrative Functions
	List of Administrative Functions
	Table 6-1. List of Administrative Functions

	nifClose
	nifDownloadDomain
	nifGetBlockList
	nifGetDeviceList
	nifGetInterfaceList
	nifGetVFDList
	nifOpenBlock
	nifOpenLink
	nifOpenPhysicalDevice
	nifOpenSession
	nifOpenVfd
	nifShutdownCM
	nifStartupCM
	Core Fieldbus Functions
	List of Core Functions
	Table 6-2. List of Core Functions

	nifFreeObjectAttributes
	nifFreeObjectType
	nifGetObjectAttributes
	nifGetObjectName
	nifGetObjectSize
	nifGetObjectType
	Table 6-3. Object Codes for the nifObjTypeList_t Data Structure
	Table 6-4. Object Codes for the nifObjTypeList_t Data Structure

	nifReadObject
	nifReadObjectList
	nifWriteObject
	Using Interface Macros
	Table 6-5. Core Function Macros

	Alert and Trend Functions
	Table 6-6. Alert Functions
	Table 6-7. Trend Function

	nifAcknowledgeAlarm
	nifWaitAlert
	nifWaitAlert2
	nifWaitTrend

	Appendix A Specifications
	PCI-FBUS/2
	PCMCIA-FBUS
	USB-8486
	FBUS-HSE/H1 Linking Device

	Appendix B Troubleshooting and Common Questions
	Interface Board—USB, PCI, and PCMCIA
	Table B-1. Device Names
	Figure B-1. Advanced Stack Configuration Dialog Box

	HSE Linking Device
	Figure B-2. LEDs on the FBUS-HSE/H1 LD
	Table B-2. Ethernet STATUS LED Flashes and Corresponding Error Conditions
	Table B-3. Interpretation of FBUS-HSE/H1 LD Module STATUS LED
	Table B-4. Description of Fieldbus Network Status LED States
	Figure B-3. LEDs on the USB-8486
	Table B-5. Interpretation of USB-8486 USB STATUS LED
	Table B-6. Interpretation of USB-8486 H1 Fieldbus Status LED

	NI-FBUS Software
	Table B-7. OPC Data Type Mapping Rule

	Appendix C Technical Support and Professional Services
	Glossary
	Numbers
	A
	B-C
	D
	E-F
	H-I
	K-L
	M-N
	O-P
	R-S
	T
	U-W

	Index
	A-C
	D-H
	I-L
	M-O
	P-S
	T-W

